Purpose
Inadequate piperacillin (PIP) exposure in intensive care unit (ICU) patients threatens therapeutic success. Model-informed precision dosing (MIPD) might be promising to individualize dosing; however, the transferability of published models to external populations is uncertain. This study aimed to externally evaluate the available PIP population pharmacokinetic (PopPK) models.
Methods
A multicenter dataset of 561 ICU patients (11 centers/3654 concentrations) was used for the evaluation of 24 identified models. Model performance was investigated for a priori (A) predictions, i.e., considering dosing records and patient characteristics only, and for Bayesian forecasting, i.e., additionally including the first (B1) or first and second (B2) therapeutic drug monitoring (TDM) samples per patient. Median relative prediction error (MPE) [%] and median absolute relative prediction error (MAPE) [%] were calculated to quantify accuracy and precision.
Results
The evaluation revealed a large inter-model variability (A: MPE − 135.6–78.3% and MAPE 35.7–135.6%). Integration of TDM data improved all model predictions (B1/B2 relative improvement vs. A: |MPE|
median_all_models
45.1/67.5%; MAPE
median_all_models
29/39%). The model by Kim et al. was identified to be most appropriate for the total dataset (A/B1/B2: MPE − 9.8/− 5.9/− 0.9%; MAPE 37/27.3/23.7%), Udy et al. performed best in patients receiving intermittent infusion, and Klastrup et al. best predicted patients receiving continuous infusion. Additional evaluations stratified by sex and renal replacement therapy revealed further promising models.
Conclusion
The predictive performance of published PIP models in ICU patients varied considerably, highlighting the relevance of appropriate model selection for MIPD. Our differentiated external evaluation identified specific models suitable for clinical use, especially in combination with TDM.
Supplementary Information
The online version contains supplementary material available at 10.1007/s00134-023-07154-0.
The altered pharmacokinetics of renally cleared drugs such as meropenem in critically ill patients receiving continuous renal replacement therapy (CRRT) might impact target attainment. Model-informed precision dosing (MIPD) is applied to individualize meropenem dosing.
Voriconazole (VRC) is used as first line antifungal agent against invasive aspergillosis. Model-based approaches might optimize VRC therapy. This study aimed to investigate the predictive performance of pharmacokinetic models of VRC without pharmacogenetic information for their suitability for model-informed precision dosing. Seven PopPK models were selected from a systematic literature review. A total of 66 measured VRC plasma concentrations from 33 critically ill patients was employed for analysis. The second measurement per patient was used to calculate relative Bias (rBias), mean error (ME), relative root mean squared error (rRMSE) and mean absolute error (MAE) (i) only based on patient characteristics and dosing history (a priori) and (ii) integrating the first measured concentration to predict the second concentration (Bayesian forecasting). The a priori rBias/ME and rRMSE/MAE varied substantially between the models, ranging from −15.4 to 124.6%/−0.70 to 8.01 mg/L and from 89.3 to 139.1%/1.45 to 8.11 mg/L, respectively. The integration of the first TDM sample improved the predictive performance of all models, with the model by Chen (85.0%) showing the best predictive performance (rRMSE: 85.0%; rBias: 4.0%). Our study revealed a certain degree of imprecision for all investigated models, so their sole use is not recommendable. Models with a higher performance would be necessary for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.