A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than others and reaction rate constants can vary over several orders of magnitude. We consider approaches to approximation of such models that take the multiscale nature of the system into account. Our primary example is a model of a cell's viral infection for which we apply a combination of averaging and law of large number arguments to show that the ``slow'' component of the model can be approximated by a deterministic equation and to characterize the asymptotic distribution of the ``fast'' components. The main goal is to illustrate techniques that can be used to reduce the dimensionality of much more complex models.Comment: Published at http://dx.doi.org/10.1214/105051606000000420 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
Motivated as a null model for comparison with data, we study the following model for a phylogenetic tree on n extant species. The origin of the clade is a random time in the past, whose (improper) distribution is uniform on (0, ∞). After that origin, the process of extinctions and speciations is a continuous-time critical branching process of constant rate, conditioned on having the prescribed number n of species at the present time. We study various mathematical properties of this model as n → ∞ limits: time of origin and of most recent common ancestor; pattern of divergence times within lineage trees; time series of numbers of species; number of extinct species in total, or ancestral to extant species; and "local" structure of the tree itself. We emphasize several mathematical techniques: associating walks with trees, a point process representation of lineage trees, and Brownian limits. * MSC 2000 subject classification. Primary: 60J85; Secondary: 60J65,92D15
Ordinary differential equations obtained as limits of Markov processes appear in many settings. They may arise by scaling large systems, or by averaging rapidly fluctuating systems, or in systems involving multiple time-scales, by a combination of the two. Motivated by models with multiple time-scales arising in systems biology, we present a general approach to proving a central limit theorem capturing the fluctuations of the original model around the deterministic limit. The central limit theorem provides a method for deriving an appropriate diffusion (Langevin) approximation.There are many proofs for theorems like these. In particular, results of both types can be proved using the martingale central limit theorem (Theorem A.1). For example, in the first case, there is typically a sequence of functions F N such that
Consider a continuous-time binary branching process conditioned to have population size n at some time t, and with a chance p for recording each extinct individual in the process. Within the family tree of this process, we consider the smallest subtree containing the genealogy of the extant individuals together with the genealogy of the recorded extinct individuals. We introduce a novel representation of such subtrees in terms of a point-process, and provide asymptotic results on the distribution of this point-process as the number of extant individuals increases. We motivate the study within the scope of a coherent analysis for an a priori model for macroevolution.Comment: 30 page
Motivated as a null model for comparison with data, we study the following model for a phylogenetic tree on n extant species. The origin of the clade is a random time in the past, whose (improper) distribution is uniform on (0, ∞). After that origin, the process of extinctions and speciations is a continuous-time critical branching process of constant rate, conditioned on having the prescribed number n of species at the present time. We study various mathematical properties of this model as n → ∞ limits: time of origin and of most recent common ancestor; pattern of divergence times within lineage trees; time series of numbers of species; number of extinct species in total, or ancestral to extant species; and "local" structure of the tree itself. We emphasize several mathematical techniques: associating walks with trees, a point process representation of lineage trees, and Brownian limits. * MSC 2000 subject classification. Primary: 60J85; Secondary: 60J65,92D15 Standard modelsOurs is, roughly speaking, the third simplest model one might devise, so let us first recall the two simpler models.The Yule model. Yule [24] proposed the basic model for speciations without extinctions. Initially there is one species. Thereafter, independently for each existing species, new species originate as "daughter" species at constant rate λ (i.e. at the times of a Poisson (rate λ) process). So for given n one can get a model for an n-species tree by taking the present as a random time at which the number of species equals n. (The associated continuous-time Markov chain counting number of species is often called the Yule process, though its origin as a model for species is often forgotten.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.