Objective: To identify the molecular basis for prenatally suspected cases of megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) (MIM 249210) in 3 independent families with clinical and radiographic evidence of MMIHS. Methods: Whole-exome sequencing (WES) and Sanger sequencing of the ACTG2 gene. Results: We identified a novel heterozygous de novo missense variant in ACTG2 c.770G>A (p.Arg257His) encoding γ-2 smooth muscle actin (ACTG2) in 2 siblings with MMIHS, suggesting gonadal mosaicism of one of the parents. Two additional de novo missense variants (p.Arg257Cys and p.Arg178His) in ACTG2 were identified in 2 additional MMHIS patients. All of our patients had evidence of fetal megacystis and a normal or slightly increased amniotic fluid volume. Additional findings included bilateral renal hydronephrosis, an enlarged fetal stomach, and transient dilated bowel loops. ACTG2 immunostaining of the intestinal tissue showed an altered muscularis propria, a markedly thinned longitudinal muscle layer, and a reduced amount and abnormal distribution of ACTG2. Conclusion: Our study demonstrates that de novo mutations in ACTG2 are a cause of fetal megacystis in MMIHS and that gonadal mosaicism may be present in a subset of cases. These findings have implications for the counseling of families with a diagnosis of fetal megacystis with a preserved amniotic fluid volume and associated gastrointestinal findings.
We used whole exome sequence analysis to investigate a possible genetic etiology for a patient with the phenotype of intrauterine growth restriction, microcephaly, developmental delay, failure to thrive, congenital bilateral hip dysplasia, cerebral and cerebellar atrophy, hydrocephalus, and congenital diaphragmatic hernia (CDH).
Whole exome sequencing identified a novel de novo c.2722G > T (p.E908X) mutation in the Myosin Heavy Chain 10 gene (MYH10) which encodes for non-muscle heavy chain II B (NMHC IIB). Mutations in MYH10 have not been previously described in association with human disease. The E908X mutation is located in the coiled-coil region of the protein and is expected to delete the tail domain and disrupt filament assembly.
Nonmuscle myosin IIs (NM IIs) are a group of ubiquitously expressed proteins, and NM II B is specifically enriched in neuronal tissue and is thought to be important in neuronal migration. It is also expressed in cardiac myocytes along with NM IIC.
Homozygous NMHC II B-/B- mouse knockouts die by embryonic day (E)14.5 with severe cardiac defects (membranous ventricular septal defect and cardiac outflow tract abnormalities) and neurodevelopmental disorders (progressive hydrocephalus and neuronal migrational abnormalities).
A heterozygous MYH10 loss of function mutation produces a severe neurologic phenotype and CDH but no apparent cardiac phenotype and suggests that MYH10 may represent a novel gene for brain malformations and/or CDH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.