Human error caused by the interaction and effect of fatigue, stress and anxiety in seafarers is the subject of this research. The human element is a major part of the maritime system. We used Bayesian networks to predict human error in maritime affairs by analysing interactions between people, technology, organisational and environmental factors which make up the specificity of the maritime system. Bayesian networks are graphical structures developed to represent the conditional dependencies among a number of variables and to make conditional conclusions related to the selected variables. Through the analysis of psychic causes such as stress, fatigue, anxiety and so on, the model can produce graphic diagrams indicating which rank on which type of vessel at which seafarers age contributes to an increase in conditional probability of human error. The contribution of the paper is to find the worst combinations of influencing variables that can lead to an increase in the risk of human error. The results show a significant level of fatigue and stress in all officers (engine and nautical), regardless of the type of vessel they serve. A strong presence of anxiety is also reported in all surveyed officers, with a higher degree between engine officers.
An integrative approach to maritime accident risk factor assessment in accordance with formal safety assessment is proposed, which exploits the multifaceted capabilities of Bayesian networks (BNs) by consolidation of modelling, verification, and validation. The methodology for probabilistic modelling with BNs is well known and its application to risk assessment is based on the model verified though sensitivity analysis only, while validation of the model is often omitted due to a lack of established evaluation measures applicable to scarce real-world data. For this reason, in this work, the modified Lyapunov divergence measure is proposed as a novel quantitative assessor that can be efficiently exploited on an individual accident scenario for contributing causal factor identification, and thus can serve as the measure for validation of the developed expert elicited BN. The proposed framework and its approach are showcased for maritime grounding of small passenger ships in the Adriatic, with the complete grounding model disclosed, quantitative validation performed, and its utilization for causal factor identification and risk factor ranking presented. The data from two real-world grounding cases demonstrate the explanatory capabilities of the developed approach.
Probabilistic maritime accident models based on Bayesian Networks are typically built upon the data available in accident records and the data obtained from human experts knowledge on accident. The drawback of such models is that they do not take explicitly into the account the knowledge on non-accidents as would be required in the probabilistic modelling of rare events. Consequently, these models have difficulties with delivering interpretation of influence of risk factors and providing sufficient confidence in the risk assessment scores. In this work, modelling and risk score interpretation, as two aspects of the probabilistic approach to complex maritime system risk assessment, are addressed. First, the maritime accident modelling is posed as a classification problem and the Bayesian network classifier that discriminates between accident and non-accident is developed which assesses state spaces of influence factors as the input features of the classifier. Maritime accident risk are identified as adversely influencing factors that contribute to the accident. Next, the weight of evidence approach to reasoning with Bayesian network classifier is developed for an objective quantitative estimation of the strength of factor influence, and a weighted strength of evidence is introduced. Qualitative interpretation of strength of evidence for individual accident influencing factor, inspired by Bayes factor, is defined. The efficiency of the developed approach is demonstrated within the context of collision of small passenger vessels and the results of collision risk assessments are given for the environmental settings typical in Croatian nautical tourism. According to the results obtained, recommendations for navigation safety during high density traffic have been distilled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.