Bladder cancer is approximately three times more common in men as compared to women. We and others have previously investigated the contribution of androgens and the androgen receptor (AR) to bladder cancer. JMJD2A and LSD1 are recently discovered AR coregulator proteins that mediate AR-dependent transcription via recently described histone-lysine demethylation (KDM) mechanisms. We used immunohistochemistry to examine JMJD2A, LSD1 and AR expression in 72 radical cystectomy specimens, resulting in evaluation of 129 tissue samples (59 urothelial carcinoma, 70 benign). We tested levels of these proteins for statistical association with clinicopathologic variables and patient survival. Expression of these markers was also assessed in human bladder cancer cell lines. The effects of pharmacological inhibition of LSD1 on the proliferation of these bladder cancer cells was determined. JMJD2A and AR levels were significantly lower in malignant versus benign urothelium, while increased LSD1 levels were observed in malignant urothelium relative to benign. A significant reduction in all three proteins occurred with cancer stage progression, including muscle invasion (JMJD2A/LSD1/AR), extravesical extension (JMJD2A/LSD1) and lymph node metastasis (JMJD2A/AR). Lower JMJD2A intensity correlated with additional poor prognostic features, including lymphovascular invasion, concomitant carcinoma in situ and tobacco usage, and predicted significantly worse overall survival. Pharmacological inhibition of LSD1 suppressed bladder cancer cell proliferation and androgen induced transcription. Our results support a novel role for the AR-KDM complex in bladder cancer initiation and progression, identify JMJD2A as a promising prognostic biomarker, and demonstrate targeting of the KDM activity as an effective potential approach for bladder cancer growth inhibition.
The high phosphate content of Bacillus subtilis cell walls dictates that cell wall metabolism is an important feature of the PhoPR-mediated phosphate limitation response. Here we report the expression profiles of cell-envelope-associated and PhoPR regulon genes, determined by live cell array and transcriptome analysis, in exponentially growing and phosphate-limited B. subtilis cells. Control by the WalRK two-component system confers a unique expression profile and high level of promoter activity on the genes of its regulon with yocH and cwlO expression differing both qualitatively and quantitatively from all other autolysin-encoding genes examined. The activity of the PhoPR two-component system is restricted to the phosphate-limited state, being rapidly induced in response to the cognate stimulus, and can be sustained for an extended phosphate limitation period. Constituent promoters of the PhoPR regulon show heterogeneous induction profiles and very high promoter activities. Phosphate-limited cells also show elevated expression of the actin-like protein MreBH and reduced expression of the WapA cell wall protein and WprA cell wall protease indicating that cell wall metabolism in this state is distinct from that of exponentially growing and stationary-phase cells. The PhoPR response is very rapidly deactivated upon removal of the phosphate limitation stimulus with concomitant increased expression of cell wall metabolic genes. Moreover expression of genes encoding enzymes involved in sulphur metabolism is significantly altered in the phosphate-limited state with distinct perturbations being observed in wild-type 168 and AH024 (DphoPR) cells.
SummaryThe WalRK (YycFG) two-component system coordinates cell wall metabolism with growth by regulating expression of autolysins and proteins that modulate autolysin activity. Here we extend its role in cell wall metabolism by showing that WalR binds to 22 chromosomal loci in vivo. Among the newly identified genes of the WalRK bindome are those that encode the wall-associated protein WapA, the penicillin binding proteins PbpH and Pbp5, the minor teichoic acid synthetic enzymes GgaAB and the regulators s I RsgI. The putative WalR binding sequence at many newly identified binding loci deviates from the previously defined consensus. Moreover, expression of many newly identified operons is controlled by multiple regulators. An unusual feature is that WalR binds to an extended DNA region spanning multiple open reading frames at some loci. WalRK directly activates expression of the sigIrsgI operon from a newly identified s A promoter and represses expression from the previously identified s I promoter. We propose that this regulatory link between WalRK and s I RsgI expression ensures that the endopeptidase requirement (CwlO or LytE) for cell viability is fulfilled during growth and under stress conditions. Thus the WalRK and s I RsgI regulatory systems cooperate to control cell wall metabolism in growing and stressed cells.
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist. Key considerations include The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
The use of nanoparticles as a means of targeted delivery of therapeutics and imaging agents could greatly enhance the transport of biologically active contents to specific target tissues, while avoiding or reducing potentially undesired side effects. Generally speaking, the oral route of administration is associated with good patient compliance, as it is convenient, economical, noninvasive, and does not require special training. Here, we review the progress of the utilization of nanodelivery-system carriers or stabilized solid-drug nanoparticles following oral administration, with particular attention on toxicological data. Mechanisms of cytotoxicity are discussed and the problem of extrapolating knowledge to human scenarios highlighted. Additionally, issues associated with administration of drugs via the oral route are underlined, while strategies utilized to overcome these are highlighted. This review aims to offer a balanced overview of strategies currently being used in the application of nanosize constructs for oral medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.