SUMMARY1. Accurately assessing the effects of multiple human-caused stressors on freshwater (and other) ecosystems is an essential step in the development of efficient decision support tools for environmental managers. Our objective is to review potentials and limitations of the use of biological traits as indicators (BTIs) of multiple stressor effects on running water (i.e. lotic) ecosystems. 2. Pioneers in ecology provided mechanistic explanations for responses of alternative biological traits to a given stressor and for the action of habitat harshness as a trait filter. These ideas were subsequently integrated in theoretical ecological constructs (e.g. Habitat Templet Concept) that form the basis of the BTI approach. 3. To resolve the effects of multiple stressors on running waters requires multiple traits of a biologically diverse group of organisms such as lotic invertebrates. To meet this goal, however, recently created databases on the biological traits of lotic invertebrates must be expanded and unified. 4. Addressing the technical implementation of the BTI approach, we illustrate that anticipated problems with phylogenetic trait syndromes are seemingly less serious in reality and that presence-absence data of genera and few sample replicates are sufficient for accurate trait descriptions of invertebrate communities. 5. Current trends in politics demand that biomonitoring tools be effective at large scales, i.e. large-scale trait patterns of natural communities (i.e. at reference conditions) should be relatively stable. The trait composition of natural invertebrate communities is relatively stable at the scale of Europe and North America because trait filters of natural lotic habitats act similarly across large biogeographical units. 6. The mechanistic actions of stressors on the biological traits of invertebrates should facilitate a priori predictions, but the complexity of potential trait responses makes such predictions sometimes difficult. 7. To illustrate potentials and limitations of BTIs to identify a given stressor acting exclusively (or primarily), we examine the (i) use of functional feeding groups to indicate the action of various stressors and (ii) trait responses to an indirectly acting stressor (discharge variation) and to a more directly acting stressor (near-bottom flow). If the excessive use of specific traits for the indication of too many different stressors is avoided and a given stressor acts directly on traits as a priori predicted, reliable interpretations of trait responses can be achieved. Thus, the BTI approach has the potential to inaugurate a new era in the biomonitoring of lotic (and other) ecosystems.
1. We investigated the seasonal variation of biological traits and the influence of interannual rainfall variability on this pattern. Using long-term survey data (6-19 years) from an intermittent and a perennial stream in the Mediterranean-climate region of northern California, we examined 16 fuzzy-coded biological traits (e.g. maximum size, life cycle duration, and mode of respiration). 2. Seasonal habitat variability is higher in the intermittent stream than in the perennial stream. During the winter and spring wet-season both streams flood; however, during the summer dry-season, the intermittent stream forms isolated pools in (occasionally drying completely). 3. Seasonal habitat variability influenced both taxonomic and biological trait composition. Distinct taxonomic communities were present in each season, particularly in the intermittent stream. The intermittent stream also exhibited more seasonal variation in biological traits than the perennial stream. 4. Despite statistically significant seasonal variation, trait composition was relatively stable among seasons in comparison with taxonomic composition and abundance. Taxonomic composition varied considerably between seasons, because of high seasonal and interannual replacement of taxa resulting from seasonal habitat changes. 5. The seasonality of taxonomic composition and abundance was sensitive to interannual rainfall variability. In dry years, the taxonomic composition of communities was more similar between seasons than in wet years, while trait composition was relatively insensitive to rainfall variability. 6. Despite high seasonal variation in abundance and taxonomic composition, biological traits of aquatic macroinvertebrates varied less and exhibited seasonal stability, which may be a result of the unpredictability and harshness of stream environments.
Long-term data are needed to assess spatial and temporal variability of communities and their resilience to natural and anthropogenic disturbances, particularly in climatic regions marked by high interannual variability (e.g. mediterraneanclimate). A long-term study at four sites on two streams in mediterranean-climate California (annual sampling over 20 yr) allowed us to quantify the influence of a 5-yr prolonged drought on stream invertebrate and fish communities. Invertebrate community composition did not show recovery following drought. The primary environmental factors influencing community composition, identified through principle components and multiple correspondence analyses were precipitation and flow permanence. Invertebrate taxon richness and abundance exhibited few responses (some site specific) and recovered quickly. Native fish abundance was lowest during the drought period and highest during the wet years that occurred at the end of the study period. Importantly, the prolonged drought facilitated the establishment and success of the invasive green sunfish (Centrarchidae: Lepomis cyanellus) that was then resilient to subsequent large flow events. There was high spatial synchrony in the temporal changes among all four sites, and three distinct periods were identified: early drought, late drought, and post-drought years. However, we still found differences among sites along the flow permanence gradient from temporary to perennial in the response to drought of both invertebrate and fish assemblages likely as a result of changes in substrate, vegetation, and other habitat characteristics. The observed lack of resilience and negative impacts to biodiversity due to prolonged drought associated with long-term habitat changes is important because hydroclimatic extremes are predicted to increase in frequency and magnitude with global climate change.
1. Long-term studies in ecology are essential for understanding natural variability and in interpreting responses to disturbances and human perturbations. We assessed the longterm variability, stability and persistence of macroinvertebrate communities by analysing data from three regions in northern California with a mediterranean-climate. During the study period, precipitation either increased or decreased, and extreme drought events occurred in each region. 2. Temporal trends in precipitation resulted in shifts from 'dry-year' communities, dominated by taxa adapted to no or low flow, to 'wet-year' communities dominated by taxa adapted to high flows. The abundance of chironomid larvae was an important driver of community change. Directional change in community composition occurred at all sites and was correlated with precipitation patterns, with more dramatic change occurring in smaller streams. 3. All communities exhibited high to moderate persistence (defined by the presence/ absence of a species) and moderate to low stability (defined by changes in abundance) over the study period. Stability and persistence were correlated with climatic variation (precipitation and El Niñ o Southern Oscillation) and stream size. Stability and persistence increased as a result of drought in small streams (first-order) but decreased in larger streams (second-and third-order). Communities from the dry season were less stable than those from the wet-season. 4. This study demonstrates the importance of long-term studies in capturing the effects of and recovery from rare events, such as the prolonged and extreme droughts considered here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.