Consider the problem of image deblurring in the presence of impulsive noise. Standard image deconvolution methods rely on the Gaussian noise model and do not perform well with impulsive noise. The main challenge is to deblur the image, recover its discontinuities and at the same time remove the impulse noise. Median-based approaches are inadequate, because at high noise levels they induce nonlinear distortion that hampers the deblurring process. Distinguishing outliers from edge elements is difficult in current gradient-based edge-preserving restoration methods. The suggested approach integrates and extends the robust statistics, line process (half quadratic) and anisotropic diffusion points of view. We present a unified variational approach to image deblurring and impulse noise removal. The objective functional consists of a fidelity term and a regularizer. Data fidelity is quantified using the robust modified L 1 norm, and elements from the Mumford-Shah functional are used for regularization. We show that the Mumford-Shah regularizer can be viewed as an extended line process. It reflects spatial organization properties of the image edges, that do not appear in the common line process or anisotropic diffusion. This allows to distinguish outliers from edges and leads to superior experimental results.
We consider the problem of restoring a multichannel image corrupted by blur and impulsive noise (e.g., salt-and-pepper noise). Using the variational framework, we consider the L1 fidelity term and several possible regularizers. In particular, we use generalizations of the Mumford-Shah (MS) functional to color images and gamma-convergence approximations to unify deblurring and denoising. Experimental comparisons show that the MS stabilizer yields better results with respect to Beltrami and total variation regularizers. Color edge detection is a beneficial by-product of our methods.
Figure 1. From two real blurred frames (left), we automatically and simultaneously estimate the motion region, the motion vector, and the image intensity of the foreground (middle). Based on this and the background intensity we reconstruct the two frames (right).
Image restoration and segmentation are both classical problems, that are known to be difficult and have attracted major research efforts. This paper shows that the two problems are tightly coupled and can be successfully solved together. Mutual support of image restoration and segmentation processes within a joint variational framework is theoretically motivated, and validated by successful experimental results. The proposed variational method integrates semi-blind image deconvolution (parametric blur-kernel), and Mumford-Shah segmentation. The functional is formulated using the T-convergence approximation and is iteratively optimized via the alternate minimization method. While the major novelty of this work is in the unified treatment of the semi-blind restoration and segmentation problems, the important special case of known blur is also considered and promising results are obtained.
Abstract. The problem of image deblurring in the presence of salt and pepper noise is considered. Standard image deconvolution algorithms, that are designed for Gaussian noise, do not perform well in this case. Median type filtering is a common method for salt and pepper noise removal. Deblurring an image that has been preprocessed by median-type filtering is however difficult, due to the amplification (in the deconvolution stage) of median-induced distortion. A unified variational approach to salt and pepper noise removal and image deblurring is presented. An objective functional that represents the goals of deblurring, noiserobustness and compliance with the piecewise-smooth image model is formulated. A modified L 1 data fidelity term integrates deblurring with robustness to outliers. Elements from the Mumford-Shah functional, that favor piecewise smooth images with simple edge-sets, are used for regularization. Promising experimental results are shown for several blur models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.