Since the initial reports of COVID-19 in December 2019, the world has been gripped by the disastrous acute respiratory disease caused by the SARS-CoV-2 virus. There are an ever-increasing number of reports of neurological symptoms in patients, from severe (encephalitis), to mild (hyposmia), suggesting the potential for neurotropism of SARS-CoV-2. This Perspective investigates the hypothesis that the reliance on self-reporting of hyposmia has resulted in an underestimation of neurological symptoms in COVID-19 patients. While the acute effect of the virus on the nervous system function is vastly overshadowed by the respiratory effects, we propose that it will be important to monitor convalescent individuals for potential long-term implications that may include neurodegenerative sequelae such as viral-associated parkinsonism. As it is possible to identify premorbid harbingers of Parkinson’s disease, we propose long-term screening of SARS-CoV-2 cases post-recovery for these expressions of neurodegenerative disease. An accurate understanding of the incidence of neurological complications in COVID-19 requires long-term monitoring for sequelae after remission and a strategized health policy to ensure healthcare systems all over the world are prepared for a third wave of the virus in the form of parkinsonism.
Motor deficits in parkinsonism are caused by degeneration of dopaminergic nigral neurons. The success of disease-modifying therapies relies on early detection of the underlying pathological process, leading to early interventions in the disease phenotype. Healthy (n = 16), REM sleep behavior disorder (RBD) (n = 14), dementia with Lewy bodies (n = 10), and Parkinson’s disease (PD) (n = 20) participants underwent 18F-AV133 vesicular monoamine transporter type-2 (VMAT2) PET to determine the integrity of the nigrostriatal pathway. Clinical, neurophysiological and neuropsychological testing was conducted to assess parkinsonian symptoms. There was reduced VMAT2 levels in RBD participants in the caudate and putamen, indicating nigrostriatal degeneration. RBD patients also presented with hyposmia and anxiety, non-motor symptoms associated with parkinsonism. 18F-AV133 VMAT2 PET allows identification of underlying nigrostriatal degeneration in RBD patients. These findings align with observations of concurrent non-motor symptoms in PD and RBD participants of the Parkinson’s Progression Markers Initiative. Together, these findings suggest that RBD subjects have prodromal parkinsonism supporting the concept of conducting neuroprotective therapeutic trials in RBD-enriched cohorts. Ongoing longitudinal follow-up of these subjects will allow us to determine the time-window of clinical progression.
Parkinson’s disease is diagnosed upon the presentation of motor symptoms, resulting from substantial degeneration of dopaminergic neurons in the midbrain. Prior to diagnosis, there is a lengthy prodromal stage in which non-motor symptoms, including olfactory deficits (hyposmia), develop. There is limited information about non-motor impairments and there is a need for directed research into these early pathogenic cellular pathways that precede extensive dopaminergic death in the midbrain. The protein tau has been identified as a genetic risk factor in the development of sporadic PD. Tau knockout mice have been reported as an age-dependent model of PD, and this study has demonstrated that they develop motor deficits at 15-months-old. We have shown that at 7-month-old tau knockout mice present with an overt hyposmic phenotype. This olfactory deficit correlates with an accumulation of α-synuclein, as well as autophagic impairment, in the olfactory bulb. This pathological feature becomes apparent in the striatum and substantia nigra of 15-month-old tau knockout mice, suggesting the potential for a spread of disease. Initial primary cell culture experiments have demonstrated that ablation of tau results in the release of α-synuclein enriched exosomes, providing a potential mechanism for disease spread. These alterations in α-synuclein level as well as a marked autophagy impairment in the tau knockout primary cells recapitulate results seen in the animal model. These data implicate a pathological role for tau in early Parkinson’s disease.Electronic supplementary materialThe online version of this article (10.1186/s40478-018-0560-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.