MicroRNAs (miRNA) are small regulatory RNAs that control gene expression by translational suppression and destabilization of target mRNAs. There is increasing evidence that miRNAs regulate genes associated with fibrosis in organs, such as the heart, kidney, liver, and the lung. In a large-scale screening for miRNAs potentially involved in bleomycin-induced fibrosis, we found expression of miR-29 family members significantly reduced in fibrotic lungs. Analysis of normal lungs showed the presence of miR-29 in subsets of interstitial cells of the alveolar wall, pleura, and at the entrance of the alveolar duct, known sites of pulmonary fibrosis. miR-29 levels inversely correlated with the expression levels of profibrotic target genes and the severity of the fibrosis. To study the impact of miR-29 down-regulation in the lung interstitium, we characterized gene expression profiles of human fetal lung fibroblast IMR-90 cells in which endogenous miR-29 was knocked down. This confirmed the derepression of reported miR-29 targets, including several collagens, but also revealed up-regulation of a large number of previously unrecognized extracellular matrix-associated and remodeling genes. Moreover, we found that miR-29 is suppressed by transforming growth factor (TGF)-β1 in these cells, and that many fibrosis-associated genes up-regulated by TGF-β1 are derepressed by miR-29 knockdown. Interestingly, a comparison of TGF-β1 and miR-29 targets revealed that miR-29 controls an additional subset of fibrosis-related genes, including laminins and integrins, independent of TGF-β1. Together, these strongly suggest a role of miR-29 in the pathogenesis of pulmonary fibrosis. miR-29 may be a potential new therapeutic target for this disease.
A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains–containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro–IL-1β and pro–IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome–selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream–induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease.
Background: IRAK4 is a central kinase in IL-1R/TLR signaling. Results: IRAK4 is activated by autophosphorylation, and its inhibition reduces cytokine induction in human monocytes but not dermal fibroblasts. Conclusion: IL-1R/TLR-induced autophosphorylation activates IRAK4 and controls cytokine induction in a cell type-specific manner. Significance: Our data provide the mechanism of IRAK4 activation and role in cytokine induction in human cells.
Pulmonary fibrosis is a pathological condition in which lungs become scarred due to the excess extracellular matrix (ECM) deposition and structural alterations in the interstitium of lung parenchyma. Many patients with interstitial lung diseases (ILDs) caused by long-term exposure to toxic substances, chronic infections, or autoimmune responses develop fibrosis. Etiologies for many ILDs are unknown, such as idiopathic pulmonary fibrosis (IPF), a devastating, relentless form of pulmonary fibrosis with a median survival of 2-3 years. Despite several decades of research, factors that initiate and sustain the fibrotic response in lungs remain unclear and there is no effective treatment to block progression of fibrosis. Here we summarize recent findings on the antifibrotic activity of miR-29, a small noncoding regulatory RNA, in the pathogenesis of fibrosis by regulating ECM production and deposition, and epithelial-mesenchymal transition (EMT). We also describe interactions of miR-29 with multiple profibrotic and inflammatory pathways. Finally, we review the antifibrotic activity of miR-29 in animal models of fibrosis and highlight miR-29 as a promising therapeutic reagent or target for the treatment of pulmonary fibrosis.
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate immune signaling by Toll-like receptors (TLRs), and loss of IRAK4 activity in mice and humans increases susceptibility to bacterial infections and causes defects in TLR and IL1 ligand sensing. However, the mechanism by which IRAK4 activity regulates the production of downstream inflammatory cytokines is unclear. Using transcriptomic and biochemical analyses of human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the activation of interferon regulatory factor 5 (IRF5), a transcription factor implicated in the pathogenesis of multiple autoimmune diseases. Following TLR7/8 stimulation by its agonist R848, chemical inhibition of IRAK4 abolished IRF5 translocation to the nucleus and thus prevented IRF5 binding to and activation of the promoters of inflammatory cytokines in human monocytes. We also found that IKKβ, an upstream IRF5 activator, is phosphorylated in response to the agonist-induced TLR signaling. Of note, IRAK4 inhibition blocked IKKβ phosphorylation but did not block the nuclear translocation of NFκB, which was surprising, given the canonical role of IKKβ in phosphorylating IκB to allow NFκB activation. Moreover, pharmacological inhibition of either IKKβ or the serine/threonine protein kinase TAK1 in monocytes blocked TLR-induced cytokine production and IRF5 translocation to the nucleus, but not nuclear translocation of NFκB. Taken together, our data suggest a mechanism by which IRAK4 activity regulates TAK1 and IKKβ activation, leading to the nuclear translocation of IRF5 and induction of inflammatory cytokines in human monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.