The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.Idealized modeling simulations have been instrumental in advancing our understanding of varying aspects of cold pool, or density current, characteristics. These modeling studies have examined the turbulent and dynamic characteristics of density currents and the impact of the environment, such as the background stability and shear, on the cold pool dynamics [e.g., Droegemeier and Wilhelmson, 1987, hereafter DW87;Xu, 1992; Liu and Moncrieff, 2000, hereafter LM00; Seigel and van den Heever, 2012, hereafter SvdH12; Bryan and Rotunno, 2014; Rooney, 2015]. Other studies have examined the role of microphysical processes and GRANT AND VAN DEN HEEVER COLD POOL DISSIPATION 1138
The relative sensitivity of midlatitude deep convective precipitation to aerosols and midlevel dry layers has been investigated in this study using high-resolution cloud-resolving model simulations. Nine simulations, including combinations of three moisture profiles and three aerosol number concentration profiles, were performed. Because of the veering wind profile of the initial sounding, the convection splits into a left-moving storm that is multicellular in nature and a right-moving storm, a supercell, which are analyzed separately.The results demonstrate that while changes to the moisture profile always induce larger changes in precipitation than do variations in aerosol concentrations, multicells are sensitive to aerosol perturbations whereas supercells are less so. The multicellular precipitation sensitivity arises through aerosol impacts on the cold pool forcing. It is shown that the altitude of the dry layer influences whether cold pools are stronger or weaker and hence whether precipitation increases or decreases with increasing aerosol concentrations. When the dry-layer altitude is located near cloud base, cloud droplet evaporation rates and hence latent cooling rates are greater with higher aerosol loading, which results in stronger low-level downdrafts and cold pools. However, when the dry-layer altitude is located higher above cloud base, the low-level downdrafts and cold pools are weaker with higher aerosol loading because of reduced raindrop evaporation rates. The changes to the cold pool strength initiate positive feedbacks that further modify the cold pool strength and subsequent precipitation totals. Aerosol impacts on deep convection are therefore found to be modulated by the altitude of the dry layer and to vary inversely with the storm organization.
In this study, the influence of aerosols, surface roughness length, soil moisture, and synergistic interactions among these factors on tropical convective rainfall focused along a sea breeze front are explored within idealized cloud-resolving modeling simulations using the Regional Atmospheric Modeling System (RAMS). The idealized RAMS domain setup is representative of the coastal Cameroon rainforest in equatorial Africa. In order to assess the potential sensitivity of sea breeze convection to increasing anthropogenic activity and deforestation occurring in such regions, 27 total simulations are performed in which combinations of enhanced aerosol concentrations, reduced surface roughness length, and reduced soil moisture are included. Both enhanced aerosols and reduced soil moisture are found to individually reduce the precipitation due to reductions in downwelling shortwave radiation and surface latent heat fluxes, respectively, while perturbations to the roughness length do not have a large impact on the precipitation. The largest soil moisture perturbations dominate the precipitation changes due to reduced low-level moisture available to the convection, but if the soil moisture perturbation is more moderate, synergistic interactions between soil moisture and aerosols enhance the sea breeze precipitation. This is found to result from evening convection that forms ahead of the sea breeze only when both effects are present. Interactions between the resulting gust fronts and the sea breeze front locally enhance convergence and therefore the rainfall. The results of this study underscore the importance of considering the aerosol-cloud-land surface system responses to perturbations in aerosol loading and land surface characteristics.
The processes governing organized tropical convective systems are not completely understood despite their important influences on the tropical atmosphere and global circulation. In particular, cold pools are known to influence the structure and maintenance of midlatitude systems via Rotunno–Klemp–Weisman (RKW) theory, but cold pools may interact differently with tropical convection because of differences in cold pool strength and environmental shear. In this study, the role of cold pools in organized oceanic tropical convective systems is investigated, including their influence on system intensity, mesoscale structure, and propagation. To accomplish this goal, high-resolution idealized simulations are performed for two different systems that are embedded within a weakly sheared cloud population approaching radiative–convective equilibrium. The cold pools are altered by changing evaporation rates below cloud base in a series of sensitivity tests. The simulations demonstrate surprising findings: when cold pools are weakened, the convective systems become more intense. However, their propagation speeds and mesoscale structure are largely unaffected by the cold pool changes. Passive tracers introduced into the cold pools indicate that the convection intensifies when cold pools are weakened because cold pool air is entrained into updrafts, thereby reducing updraft intensity via the cold pools’ initial negative buoyancy. Gravity waves, rather than cold pools, appear to be the important modulators of system propagation and mesoscale structure. These results reconfirm that RKW theory does not fully explain the behavior of tropical oceanic convective systems, even those that otherwise appear consistent with RKW thinking.
The sensitivity of supercell morphology to the vertical distribution of moisture is investigated in this study using a cloud-resolving model with 300-m horizontal grid spacing. Simulated storms are found to transition from classic (CL) to low-precipitation (LP) supercells when the strength of elevated dry layers in the environmental moisture profile is increased. Resulting differences in the microphysical and dynamical characteristics of the CL and LPs are analyzed. The LPs produce approximately half of the accumulated surface precipitation as the CL supercell. The precipitating area in the LPs is spatially smaller and overall less intense, especially in the rear-flank downdraft region. The LPs have smaller deviant rightward storm motion compared to the CL supercell, and updrafts are narrower and more tilted, in agreement with observations. Lower relative humidities within the dry layers enhance evaporation and erode the upshear cloud edge in the LPs. This combination favors a downshear distribution of hydrometeors. As a result, hail grows preferentially along the northeastern side of the updraft in the LPs as hail embryos are advected cyclonically around the mesocyclone, whereas the primary midlevel hail growth mechanism in the CL supercell follows the classic Browning and Foote model. The differing dominant hail growth mechanisms can explain the variations in surface precipitation distribution between CLs and LPs. While large changes in the microphysical structure are seen, similarities in the structure and strength of the updraft and vorticity indicate that LP and CL supercells are not dynamically distinct storm types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.