Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-induced neuroapoptosis in the neocortex is closely correlated in space and time with the appearance of activated microglia near dead cells. The timing and molecular pattern of microglial activation varied with the level of cell death. Although microglia rapidly mobilized to contact and engulf late stage apoptotic neurons, apoptotic bodies temporarily accumulated in neocortex, suggesting that in severe cases of alcohol toxicity the neurodegeneration rate exceeds the clearance capacity of endogenous microglia. Nevertheless, most dead cells were cleared and microglia began to deactivate within 1-2 days of the initial insult. Coincident with microglial activation and deactivation, there was a transient increase in expression of pro-inflammatory factors, TNFα and IL-1β, after severe (5 g/kg) but not moderate (3 g/kg) EtOH levels. Alcohol-induced microglial activation and pro-inflammatory factor expression were largely abolished in BAX null mice lacking neuroapoptosis, indicating that microglial activation is primarily triggered by apoptosis rather than the alcohol. Therefore, acute alcohol exposure in the developing neocortex causes transient microglial activation and mobilization, promoting clearance of dead cells and tissue recovery. Moreover, cortical microglia show a remarkable capacity to rapidly deactivate following even severe neurodegenerative insults in the developing brain.
BackgroundThe proper spatial and temporal regulation of dorsal telencephalic progenitor behavior is a prerequisite for the formation of the highly-organized, six-layered cerebral cortex. Premature differentiation of cells, disruption of cell cycle timing, excessive apoptosis, and/or incorrect neuronal migration signals can have devastating effects, resulting in a number of neurodevelopmental disorders involving microcephaly and/or lissencephaly. Though genes encoding many key players in cortical development have been identified, our understanding remains incomplete. We show that the gene encoding Akirin2, a small nuclear protein, is expressed in the embryonic telencephalon. Converging evidence indicates that Akirin2 acts as a bridge between transcription factors (including Twist and NF-κB proteins) and the BAF (SWI/SNF) chromatin remodeling machinery to regulate patterns of gene expression. Constitutive knockout of Akirin2 is early embryonic lethal in mice, while restricted loss in B cells led to disrupted proliferation and cell survival.MethodsWe generated cortex-restricted Akirin2 knockouts by crossing mice harboring a floxed Akirin2 allele with the Emx1-Cre transgenic line and assessed the resulting embryos using in situ hybridization, EdU labeling, and immunohistochemistry.ResultsThe vast majority of Akirin2 mutants do not survive past birth, and exhibit extreme microcephaly, with little dorsal telencephalic tissue and no recognizable cortex. This is primarily due to massive cell death of early cortical progenitors, which begins at embryonic day (E)10, shortly after Emx1-Cre is active. Immunostaining and cell cycle analysis using EdU labeling indicate that Akirin2-null progenitors fail to proliferate normally, produce fewer neurons, and undergo extensive apoptosis. All of the neurons that are generated in Akirin2 mutants also undergo apoptosis by E12. In situ hybridization for Wnt3a and Wnt-responsive genes suggest defective formation and/or function of the cortical hem in Akirin2 null mice. Furthermore, the apical ventricular surface becomes disrupted, and Sox2-positive progenitors are found to “spill” into the lateral ventricle.ConclusionsOur data demonstrate a previously-unsuspected role for Akirin2 in early cortical development and, given its known nuclear roles, suggest that it may act to regulate gene expression patterns critical for early progenitor cell behavior and cortical neuron production.Electronic supplementary materialThe online version of this article (doi:10.1186/s13064-016-0076-8) contains supplementary material, which is available to authorized users.
Some parenchymal microglia in mammalian brain tissues, termed "juxtavascular microglia," directly contact the basal lamina of blood vessels; however, the functional consequences of this unique structural relationship are unknown. Here we used a rat brain slice model of traumatic brain injury to investigate the dynamic behavior of juxtavascular microglia following activation. Juxtavascular microglia were identified by confocal 3D reconstruction in tissue slices stained with a fluorescent lectin (FITC-IB4) that labels both microglia and blood vessel endothelial cells. Immunolabeling confirmed that juxtavascular cells were true parenchymal microglia (OX42+, ED2-) and not perivascular cells or pericytes. Time-lapse imaging in live tissue slices revealed that activating juxtavascular microglia withdraw most extant branches but often maintain contact with blood vessels, usually moving to the surface of a vessel within 1-4 h. Subsequently, some microglia migrate along the parenchymal surface of vessels, moving at rates up to 40 microm/h. Activated juxtavascular microglia sometimes repeatedly extend veil-like protrusions into the surrounding tissue, consistent with a role in tissue surveillance. Juxtavascular cells were twice as likely as nonjuxtavascular cells to be locomotory by 10 h in vitro, suggesting an enhanced activation response. Moreover, 38% of all juxtavascular cells migrated along a vessel, whereas this was never observed for a nonjuxtavascular cell. These observations identify a mobile subpopulation (10%-30%) of parenchymal microglia that activate rapidly and are preferentially recruited to the surfaces of blood vessels following brain tissue injury. The dynamic and sustained interaction of microglia with brain microvessels may facilitate signaling between injured brain parenchyma and components of the blood-brain barrier or circulating immune cells of the blood in vivo.
The mammalian Pcdhg gene cluster encodes a family of 22 cell adhesion molecules, the gamma-Protocadherins (γ-Pcdhs), critical for neuronal survival and neural circuit formation. The extent to which isoform diversity-a γ-Pcdh hallmark-is required for their functions remains unclear. We used a CRISPR/Cas9 approach to reduce isoform diversity, targeting each Pcdhg variable exon with pooled sgRNAs to generate an allelic series of 26 mouse lines with 1 to 21 isoforms disrupted via discrete indels at guide sites and/or larger deletions/ rearrangements. Analysis of 5 mutant lines indicates that postnatal viability and neuronal survival do not require isoform diversity. Surprisingly, given reports that it might not independently engage in trans-interactions, we find that γC4, encoded by Pcdhgc4, is the only critical isoform. Because the human orthologue is the only PCDHG gene constrained in humans, our results indicate a conserved γC4 function that likely involves distinct molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.