Kidney failure and associated uraemia have implications for the cardiovascular system, brain, and blood–brain barrier (BBB). We aim to examine BBB disruption, by assessing brain-derived neurotropic factor (BDNF), neuron-specific enolase (NSE) levels, and gut-blood barrier (GBB) disruption by trimethylamine N-oxide (TMAO), in chronic kidney disease (CKD) patients. Additionally, endothelial tight-junction protein expressions and modulation via TMAO were assessed. Serum from chronic kidney disease (CKD) female and male haemodialysis (HD) patients, and controls, were used to measure BDNF and NSE by enzyme-linked immunosorbent assays, and TMAO by mass spectrometry. Immunofluorescent staining of subcutaneous fat biopsies from kidney transplant recipients, and controls, were used to measure microvascular expression of tight-junction proteins (claudin-5, occludin, JAM-1), and control microvasculature for TMAO effects. HD patients versus controls, had significantly lower and higher serum levels of BDNF and NSE, respectively. In CKD biopsies versus controls, reduced expression of claudin-5, occludin, and JAM-1 were observed. Incubation with TMAO significantly decreased expression of all tight-junction proteins in the microvasculature. Uraemia affects BBB and GBB resulting in altered levels of circulating NSE, BDNF and TMAO, respectively, and it also reduces expression of tight-junction proteins that confer BBB maintenance. TMAO serves as a potential candidate to alter BBB integrity in CKD.
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Background Chronic kidney disease (CKD) is linked to an increased cardiovascular disease (CVD) burden. Albeit underappreciated, sex differences are evident in CKD with females being more prone to CKD development, but males progressing more rapidly to kidney failure (KF). Cardiovascular remodelling is a hallmark of CKD with increased arterial and valvular calcification contributing to CKD. However, little is known regarding sex differences in calcific cardiovascular remodelling in KF patients. Thus, we hypothesise that sex differences are present in coronary artery calcification (CAC) and aortic valve calcification (AVC) in patients with KF. Methods KF patients, males (n = 214) and females (n = 107), that had undergone computer tomography (CT) assessment for CAC and AVC were selected from three CKD cohorts. All patients underwent non-contrast multi-detector cardiac CT scanning, with CAC and AVC scoring based on the Agatston method. Baseline biochemical measurements were retrieved from cohort databases, including plasma analyses for inflammation markers (IL-6, TNF, hsCRP) and oxidative stress by skin autofluorescence measuring advanced glycation end-products (AGE), amongst other variables. Results Sex-disaggregated analyses revealed that CAC score was associated with age in both males and females (both p < 0.001). Age-adjusted analyses revealed that in males CAC was associated with diabetes mellitus (DM) (p = 0.018) and CVD (p = 0.011). Additionally, for females CAC associated with IL-6 (p = 0.005) and TNF (p = 0.004). In both females and males CAC associated with AGE (p = 0.042 and p = 0.05, respectively). CAC was associated with mortality for females (p = 0.015) independent of age. AVC in females was not reviewed due to low AVC-positive samples (n = 14). In males, in multivariable regression AVC was associated with age (p < 0.001) and inflammation, as measured by IL-6 (p = 0.010). Conclusions In female KF patients inflammatory burden and oxidative stress were associated with CAC. Whereas in male KF patients oxidative stress and inflammation were associated with CAC and AVC, respectively. Our findings suggest a sex-specific biomarker signature for cardiovascular calcification that may affect the development of cardiovascular complications in males and females with KF.
Background Individuals with chronic kidney disease are affected by acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) due to multiple comorbidities and altered immune system. The first step of the infection process is the binding of SARS‐CoV‐2 with angiotensin‐converting enzyme 2 (ACE2) receptor, followed by its priming by transmembrane protease serine 2 (TMPRSS2). We hypothesized that circulating soluble ACE2 levels, as well as the expressions of ACE2 and TMPRSS2 in the microvasculature, are increased in patients with end‐stage kidney disease (ESKD). Methods A total of 210 participants were enrolled, representing 80 ESKD patients and 73 non‐CKD controls for soluble ACE2, and 31 ESKD and 26 non‐CKD controls for vasculature and fat tissue bioassays. We have assessed ACE2 expression in blood using ELISA and in tissue using immunofluorescence. Results Soluble ACE2 levels were higher in ESKD patients compared to controls; however, there is no sex difference observed. In ESKD and controls, soluble ACE2 positively correlated with Interleukin 6 (IL‐6) and C‐reactive protein (CRP), respectively. Similarly, ACE2 tissue expression in the vasculature was higher in ESKD patients; moreover, this higher ACE2 expression was observed only in male ESKD patients. In addition, TMPRSS2 expression was observed in vessels from males and females but showed no sex difference. The expression of ACE2 receptor was higher in ESKD patients on ACE‐inhibitor/angiotensin blocker treatment. Conclusion ESKD is associated with increased ACE2 levels in the circulation and pronounced in male vasculature; however, further studies are warranted to assess possible sex differences on specific treatment regime(s) for different comorbidities present in ESKD.
Background Sex differences are underappreciated in the current understanding of cardiovascular disease (CVD) in association with chronic kidney disease (CKD). A hallmark of CKD is vascular aging that is characterised, amongst others, by; systemic inflammation, microbiota disbalance, oxidative stress, and vascular calcification—features linked to atherosclerosis/arteriosclerosis development. Thus, it is the necessary to introduce novel biomarkers related to athero-/arteriosclerotic damage for better assessment of vascular ageing in patients CKD. However, little is known about the relationship between uraemia and novel CVD biomarkers, such as growth differentiation factor-15 (GDF-15), cartilage glycoprotein-39 (YKL-40) and matrix metalloproteinase-9 (MMP-9). Therefore, we hypothesise that there are sex-specific relationships between GDF-15, YKL-40, MMP-9 levels in end-stage kidney disease (ESKD) patients in relation to gut microbiota, vascular calcification, inflammation, comorbidities, and all-cause mortality. Methods ESKD patients, males (n = 151) and females (n = 79), not receiving renal replacement therapy were selected from two ongoing prospective ESKD cohorts. GDF-15, YKL-40 and MMP9 were analysed using enzyme-linked immunosorbent assay kits. Biomarker levels were analysed in the context of gut microbiota-derived trimethylamine N-oxide (TMAO), vascular calcification, inflammatory response, oxidative stress, comorbidities, and all-cause mortality. Results Increased GDF-15 correlated with higher TMAO in females only, and with higher coronary artery calcification and IL-6. In females, diabetes was associated with elevated GDF-15 and MMP-9, whilst males with diabetes only had elevated GDF-15. No associations were found between biomarkers and CVD comorbidity. Deceased males and females had higher GDF-15 concentrations (p = 0.01 and p < 0.001, respectively), meanwhile only YKL-40 was increased in deceased males (p = 0.02). Conclusions In conclusion, in males GDF-15 and YKL-40 were related to vascular calcification, inflammation, and oxidative stress, whilst in females GDF-15 was related to TMAO. Increased levels of YKL-40 and GDF-15 in males, and only GDF-15 in females, were associated with all-cause mortality. Our findings suggest that sex-specific associations of novel CVD biomarkers have a potential to affect development of cardiovascular complications in patients with ESKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.