Following our previous investigations on the electrofreezing mechanism of supercooled water on pyroelectric crystal surfaces, we discovered that electrofreezing is a process involving the attraction and arrangement of specific ionic charges by an electric field. We found two classes of ions: the trigonal planar ions that raise the icing temperature, or “ice-makers”, and ions of different structures that reduce the icing temperature, or “ice-breakers”. In the search for more efficient promoters for electrofreezing, we anticipated that molecules that have the propensity to self-assemble with water to form hexagonal clusters might be better ice nucleators. Through icing experiments performed directly on the hemihedral faces of pyroelectric crystals of LiTaO3, we found that ions of biguanide elevate the icing temperature of supercooled water when concentrated near the negatively charged crystal’s interfacial water layer, either upon cooling or upon heating. On the other hand, the analogous guanylurea ions, which presumably assume configurations with deviations from planarity, operate as “ice-breakers”.
By performing icing experiments on hydrophilic and hydrophobic surfaces of pyroelectric amino acids and on the x‐cut faces of LiTaO3, we discovered that the effect of electrofreezing of super cooled water is triggered by ions of carbonic acid. During the cooling of the hydrophilic pyroelectric crystals, a continuous water layer is created between the charged hemihedral faces, as confirmed by impedance measurements. As a result, a current of carbonic acid ions, produced by dissolved environmental CO2, flows through the wetted layer towards the hemihedral faces and elevates the icing temperature. This proposed mechanism is based on the following: (i) on hydrophilic surfaces, water with dissolved CO2 (pH 4) freezes at higher temperatures than pure water of pH 7. (ii) In the absence of the ionic current, achieved by linking the two hemihedral faces of hydrophilic crystals by a conductive paint, water of the two pH levels freeze at the same temperature. (iii) On hydrophobic crystals with similar pyroelectric coefficients, where there is no continuous wetted layer, no electrofreezing effect is observed.
Electrofreezing experiments of super‐cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3−) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3O+) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3− ions self‐assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice‐like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3− and guanidinium (Gdm+), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl− and SO42− ions of different configurations reduce the icing temperature.
Electrofreezing experiments of super‐cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3−) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3O+) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3− ions self‐assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice‐like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3− and guanidinium (Gdm+), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl− and SO42− ions of different configurations reduce the icing temperature.
By performing icing experiments on hydrophilic and hydrophobic surfaces of pyroelectric amino acids and on the x‐cut faces of LiTaO3, we discovered that the effect of electrofreezing of super cooled water is triggered by ions of carbonic acid. During the cooling of the hydrophilic pyroelectric crystals, a continuous water layer is created between the charged hemihedral faces, as confirmed by impedance measurements. As a result, a current of carbonic acid ions, produced by dissolved environmental CO2, flows through the wetted layer towards the hemihedral faces and elevates the icing temperature. This proposed mechanism is based on the following: (i) on hydrophilic surfaces, water with dissolved CO2 (pH 4) freezes at higher temperatures than pure water of pH 7. (ii) In the absence of the ionic current, achieved by linking the two hemihedral faces of hydrophilic crystals by a conductive paint, water of the two pH levels freeze at the same temperature. (iii) On hydrophobic crystals with similar pyroelectric coefficients, where there is no continuous wetted layer, no electrofreezing effect is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.