The lymphatic vascular system has an important role in the regulation of tissue pressure, immune surveillance and the absorption of dietary fat in the intestine. There is growing evidence that the lymphatic system also contributes to a number of diseases, such as lymphedema, cancer metastasis and different inflammatory disorders. The discovery of various molecular markers allowing the distinction of blood and lymphatic vessels, together with the availability of a increasing number of in vitro and in vivo models to study various aspects of lymphatic biology, has enabled tremendous progress in research into the development and function of the lymphatic system. This review discusses recent advances in our understanding of the embryonic development of the lymphatic vasculature, the molecular mechanisms mediating lymphangiogenesis in the adult, the role of lymphangiogenesis in chronic inflammation and lymphatic cancer metastasis, and the emerging importance of the lymphatic vasculature as a therapeutic target.
The cutaneous lymphatic system plays an important role in the maintenance of tissue fluid homeostasis, in the afferent phase of the immune response, and in the metastatic spread of skin cancers. However, the lymphatic system has not received as much scientific attention as the blood vascular system, largely due to a lack of lymphatic-specific markers and to the dearth of knowledge about the molecular regulation of its development and function. The recent identification of genes that specifically control lymphatic development and the growth of lymphatic vessels (lymphangiogenesis), together with the discovery of new lymphatic endothelium-specific markers, have now provided new insights into the molecular mechanisms that control lymphatic growth and function. Moreover, studies of several genetic mouse models have set the framework for a new molecular model for embryonic lymphatic vascular development, and have identified molecular pathways whose mutational inactivation leads to human diseases associated with lymphedema. These scientific advances have also provided surprising evidence that malignant tumors can directly promote lymphangiogenesis and lymphatic metastasis, and that lymphatic vessels play a major role in cutaneous inflammation and in the cutaneous response to UVB irradiation.
The membrane glycoprotein podoplanin is expressed by several types of human cancers and might be associated with their malignant progression. Its exact biological function and molecular targets are unclear, however. Here, we assessed the relevance of tumor cell expression of podoplanin in cancer metastasis to lymph nodes, using a human MCF7 breast carcinoma xenograft model. We found that podoplanin expression promoted tumor cell motility in vitro and, unexpectedly, increased tumor lymphangiogenesis and metastasis to regional lymph nodes in vivo, without promoting primary tumor growth. Importantly, high cancer cell expression levels of podoplanin correlated with lymph node metastasis and reduced survival times in a large cohort of 252 oral squamous cell carcinoma patients. Based on comparative transcriptional profiling of tumor xenografts, we identified endothelin-1, villin-1, and tenascin-C as potential mediators of podoplanininduced tumor lymphangiogenesis and metastasis. These unexpected findings identify a novel mechanism of tumor lymphangiogenesis and metastasis induced by cancer cell expression of podoplanin, suggesting that reagents designed to interfere with podoplanin function might be developed as therapeutics for patients with advanced cancer.
Podoplanin is a small, mucin-like membrane glycoprotein highly expressed by lymphatic but not by blood vascular endothelial cells. Although it was shown to be indispensable for the correct formation and function of the lymphatic vasculature, its precise molecular function has remained unknown. In the present study, we identified the mammalian lectin galectin-8 as a novel, glycosylation-dependent interaction partner of podoplanin. Galectin-8 is a tandem-repeat type galectin, which interacts with cell surface glycoproteins, including certain integrins, as well as with extracellular matrix molecules such as fibronectin. Here we show that, similar to podoplanin, galectin-8 is more highly expressed by lymphatic than by blood vascular endothelial cells, and that it promotes lymphatic endothelial cell adhesion as well as haptotactic migration when immobilized onto a surface, while inhibiting the formation of tube-like structures by lymphatic endothelial cells in a collagen matrix when incorporated into the matrix. Importantly, functions of blood vascular endothelial cells, which lack podoplanin expression, are not affected by galectin-8. These data suggest a role for galectin-8 and podoplanin in supporting the connection of the lymphatic endothelium to the surrounding extracellular matrix, most likely in cooperation with other glycoproteins on the surface of lymphatic endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.