Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression.
The GALNT3 gene encodes GalNAc-T3, which prevents degradation of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Biallelic mutations in either GALNT3 or FGF23 result in hyperphosphatemic familial tumoral calcinosis or its variant, hyperostosis-hyperphosphatemia syndrome. Tumoral calcinosis is characterized by the presence of ectopic calcifications around major joints, whereas hyperostosis-hyperphosphatemia syndrome is characterized by recurrent long bone lesions with hyperostosis. Here we investigated four patients with hyperphosphatemia and clinical manifestations including tumoral calcinosis and/or hyperostosis-hyperphosphatemia syndrome to determine underlying genetic cause and delineate phenotypic heterogeneity of these disorders. Mutational analysis of FGF23 and GALNT3 in these patients revealed novel homozygous mutations in GALNT3. Although the presence of massive calcifications, cortical hyperostosis, or dental anomalies was not shared by all patients, all had persistent hyperphosphatemia, as well as inappropriately normal 1,25-dihyroxyvitamin D [1,25(OH)2D]. Three of the patients also had confirmed low circulating intact FGF23 concentrations. The four novel GALNT3 mutations invariably resulted in hyperphosphatemia due to low intact FGF23, but other clinical manifestations were variable. Therefore, tumoral calcinosis and hyperostosis-hyperphosphatemia syndrome represent a continuous spectrum of the same disease caused by increased phosphate levels, rather than two distinct disorders.
Evidence of association to several novel loci was detected in a GWAS of premenopausal EA women, and SNPs in one of these loci also provided supporting evidence in a sample of AA women.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.