The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-l-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio and N-formyl-l-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and a m-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.
The absence of orthogonal aminoacyl-tRNA synthetases that accept non-L-a-amino acids is the primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers. Here we report PylRS enzymes that accept a-hydroxy acids, a-thio acids, N-formyl-L-a-amino acids, and a-carboxyl acid monomers (malonic acids) that are formally precursors to polyketide natural products. These monomers are all accommodated and accepted by the translation apparatus in vitro. High-resolution structural analysis of the complex between one such PylRS enzyme and a meta-substituted 2-benzylmalonate derivative reveals an active site that discriminates pro-chiral carboxylates and accommodates the large size and distinct electrostatics of an a-carboxyl acid substituent. This work emphasizes the potential of PylRS for evolving new enzymes capable of encoding diverse non-L-a-amino acids in synergy with natural or evolved ribosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.