This work provides an overview of the present state-of-the-art in the development of deep brain Deep Brain Stimulation (DBS) and how such devices alleviate motor and cognitive disorders for a successful aging. This work reviews chronic diseases that are addressable via DBS, reporting also the treatment efficacies. The underlying mechanism for DBS is also reported. A discussion on hardware developments focusing on DBS control paradigms is included specifically the open- and closed-loop “smart” control implementations. Furthermore, developments towards a “smart” DBS, while considering the design challenges, current state of the art, and constraints, are also presented. This work also showcased different methods, using ambient energy scavenging, that offer alternative solutions to prolong the battery life of the DBS device. These are geared towards a low maintenance, semi-autonomous, and less disruptive device to be used by the elderly patient suffering from motor and cognitive disorders.
Wearable medical devices (WMDs) for healthcare applications have become ubiquitous, allowing remote, at-home, and real-time chronic monitoring that have significantly decongested clinics. These WMDs permitted the monitoring of several physiological parameters, such as heart and respiration rates, SPO2, temperature, and energy expenditure during activities of daily living (ADLs) or fitness activities. While the measurement of these parameters has become common, full noninvasive, unobtrusive, and real-time blood pressure (BP) monitoring remains elusive owing to BP’s complex dynamics. To bring this into fruition, several works have been conducted combining different biosignals to indirectly extract BP by using PTT. Unlike previous works, we considered PTT variability by averaging it over discrete durations to account for BP variability for a more accurate estimation. PTTs were obtained using electrocardiograph (ECG) and reflective photoplethysmograph (rPPG) signals extracted by a wearable device attached to a single site on the upper arm. Our results show a significant correlation between average PTT and the BP measured using auscultation in a trial study. The developed system has potential for chronic, noninvasive, and cuff-less blood pressure monitors (BPMs) for localized and single-site implementations. Meanwhile, real-time data from the wearable device may be accessed via a remote desktop or a mobile phone application.
This work presents the design of a front-end MEMS piezoresistive pressure sensor readout circuit along with a drug actuator model based on TSMC 0.18 lm CMOS technology. The overall system finds application in implantable systems based on micro-pressure sensing and actuation such as the closed loop automatic micturition chip. The system consists of high performance and ultra-low noise chopper stabilized differential amplifier front-end, a digitally programmable threshold generator and window comparator circuit for setting up the pressure thresholds for urination, and an actuator model that simulates drug delivery for micturition, overactive bladder control, and bladder closure. The system also has a novel core circuit enable for power savings mode. The corresponding sub-circuits have been designed to operate in low power that is suitable for implantation and be powered by energy harvesters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.