-Experimental studies have been carried out to study the principle operation of the conductive type wire-mesh tomography sensor and analyse the wire-mesh tomography sensor for the liquid/gas two-phase flow interface and void fraction distribution in a process column. The measurement of the two-phase flows in the process column is based on the cross-sectional local instantaneous conductivity. The sensor consists of two planes of parallel electrode wires with 16 electrodes each and was placed orthogonally with each plane. The sensor electrode wires were made of tinned copper wire with an outer diameter of 0.91 mm which stretched over the sensor fixture. Therefore, this result in the mesh grid size with 5.53×5.53mm 2 . The wire-mesh sensor was tested in a horizontal liquid/gas two-phase flows process column with nominal diameter of 95.6 mm and the sampling frequency of 5882.3529 Hz. The tomogram results show that the wire-mesh tomography provides significant results to represent the void fraction distribution in the process column and estimation error was found in the liquid/gas interface level.
The aims of this paper are to provide a review of the process tomography applications employing field programmable gate arrays (FPGA) and to understand current FPGA related researches, in order to seek for the possibility to applied FPGA technology in an ultrasonic process tomography system. FPGA allows users to implement complete systems on a programmable chip, meanwhile, five main benefits of applying the FPGA technology are performance, time to market, cost, reliability, and long-term maintenance. These advantages definitely could help in the revolution of process tomography, especially for ultrasonic process tomography and electrical process tomography. Future work is focused on the ultrasonic process tomography for chemical process column investigation using FPGA for the aspects of low cost, high speed and reconstructed image quality.
Search and Rescue (SAR) team used dip stick to measure the water depth and identify the badly eroded area and a guide line will be placed to assist them. However, ground erosion is unpredictable coupled with unknown sizes make the SAR task more difficult thus posing grave danger to SAR team in action. Therefore, this current method is no longer reliable because the flood current will swipe it away and rendered the guide line to be unfeasible over time consuming. A system proposed in this study was developed using ultrasonic sensor array to reconstruct the ground map in flood area. It consists of several sensor arrays to collect the underwater depth information and convert them into mapping data before relaying them to ground station. The results then will help the SAR team to identify the safe path to reach for the flood victims. The factor to focus on is the depth of the flood, the current flow and the medium that the wave will go through. The current flow will be the main threat because the sensor needs to be on the right angle to get the accurate reading. The data then will be transfer to excel to start the mapping for underwater ground. Based on the result from the prototype testing conducted using water tank, sensors can be installed to get wider map view and mapping can be improved by using multi-angle shapes for it to be more accurate in flood disaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.