Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
The morphinans are an important class of structurally fascinating and physiologically important natural products as exemplified by the famous opium alkaloids of the morphine family. Although this class of secondary metabolites from the juice of the opium poppy capsule was already used for medicinal purposes thousands of years ago, chemical modifications are still being applied to the core structure today in order to achieve the most specific effect on the various receptor subtypes possible with the fewest possible side effects. The unusual architecture of the morphinan core has also proven to be a highly challenging target for total synthesis. This review highlights electrosynthetic approaches towards natural and semisynthetic morphinan alkaloids. The historical progress in applying anodic aryl‐aryl couplings to the construction of the morphinan framework is described in chronological order while particular benefits and challenges concerning the electrochemical transformations are grouped together, including the influence of substitution patterns, protecting groups, and reaction conditions.
The biological activities of shancigusin C (1) and bletistrin G (2), natural products isolated from orchids, are reported along with their first total syntheses. The total synthesis of shancigusin C (1) was conducted by employing the Perkin reaction to forge the central stilbene core, whereas the synthesis of bletistrin G (2) was achieved by the Wittig olefination followed by several regioselective aromatic substitution reactions. Both syntheses were completed by applying only renewable starting materials according to the principles of xylochemistry. The cytotoxic properties of shancigusin C (1) and bletistrin G (2) against tumor cells suggest suitability as a starting point for further structural variation.
Electrochemistry provides a valuable toolbox for organic synthesis and offers an appealing, environmentally benign alternative to the use of stoichiometric quantities of chemical oxidants or reductants. Its potential to control current efficiency along with providing alternative reaction conditions in a classical sense makes electrochemistry a suitable method for large-scale industrial transformations as well as for laboratory applications in the synthesis of complex molecular architectures. Even though research in this field has intensified over the recent decades, many synthetic chemists still hesitate to add electroorganic reactions to their standard repertoire, and hence, the full potential of preparative organic electrochemistry has not yet been unleashed. This short review highlights the versatility of anodic transformations by summarizing their application in natural product synthesis.1 Introduction2 Shono-Type Oxidation3 C–N/N–N Bond Formation4 Aryl–Alkene/Aryl–Aryl Coupling5 Cycloadditions Triggered by Oxidation of Electron-Rich Arenes6 Spirocycles7 Miscellaneous Transformations8 Future Prospects
Herein, the design and development of a new one-pot and metal-free oxidative C−H activation/aza-Prins type cyclization of alkynylamines is reported. The scope of this method was demonstrated by the preparation of ten new pyrido[2,1-a]isoquinolines in moderate to high yields (38−92%). Furthermore, a mechanistic proposal for the alkyne aza-Prins cyclization is described based on DFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.