No abstract
HyperLTL is an extension of linear-time temporal logic for the specification of hyperproperties, i.e., temporal properties that relate multiple computation traces. HyperLTL can express information flow policies as well as properties like symmetry in mutual exclusion algorithms or Hamming distances in error-resistant transmission protocols. Previous work on HyperLTL model checking has focussed on the alternation-free fragment of HyperLTL, where verification reduces to checking a standard trace property over an appropriate self-composition of the system. The alternation-free fragment does, however, not cover general hyperliveness properties. Universal formulas, for example, cannot express the secrecy requirement that for every possible value of a secret variable there exists a computation where the value is different while the observations made by the external observer are the same. In this paper, we study the more difficult case of hyperliveness properties expressed as HyperLTL formulas with quantifier alternation. We reduce existential quantification to strategic choice and show that synthesis algorithms can be used to eliminate the existential quantifiers automatically. We furthermore show that this approach can be extended to reactive system synthesis, i.e., to automatically construct a reactive system that is guaranteed to satisfy a given HyperLTL formula.
Abstract. We introduce the reactive synthesis competition (SYNTCOMP), a long-term effort intended to stimulate and guide advances in the design and application of synthesis procedures for reactive systems. The first iteration of SYNTCOMP is based on the controller synthesis problem for finite-state systems and safety specifications. We provide an overview of this problem and existing approaches to solve it, and report on the design and results of the first SYNTCOMP. This includes the definition of the benchmark format, the collection of benchmarks, the rules of the competition, and the five synthesis tools that participated. We present and analyze the results of the competition and draw conclusions on the state of the art. Finally, we give an outlook on future directions of SYNTCOMP.
The reactive synthesis problem is to compute a system satisfying a given specification in temporal logic. Bounded synthesis is the approach to bound the maximum size of the system that we accept as a solution to the reactive synthesis problem. As a result, bounded synthesis is decidable whenever the corresponding verification problem is decidable, and can be applied in settings where classic synthesis fails, such as in the synthesis of distributed systems. In this paper, we study the constraint solving problem behind bounded synthesis. We consider different reductions of the bounded synthesis problem of linear-time temporal logic (LTL) to constraint systems given as boolean formulas (SAT), quantified boolean formulas (QBF), and dependency quantified boolean formulas (DQBF). The reductions represent different trade-offs between conciseness and algorithmic efficiency. In the SAT encoding, both inputs and states of the system are represented explicitly; in QBF, inputs are symbolic and states are explicit; in DQBF, both inputs and states are symbolic. We evaluate the encodings systematically using benchmarks from the reactive synthesis competition (SYNTCOMP) and state-of-theart solvers. Our key, and perhaps surprising, empirical finding is that QBF clearly dominates both SAT and DQBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.