Human adenoviruses are large (150 MDa) doubled-stranded DNA viruses that cause respiratory infections. These viruses are particularly pathogenic in healthy and immune-compromised individuals, and currently, no adenovirus vaccine is available for the general public. The purpose of this review is to describe (i) the epidemiology and pathogenicity of human adenoviruses, (ii) the biological role of adenovirus vectors in gene therapy applications, and (iii) the potential role of exosomes in adenoviral infections.
Exosomes are nanosized membrane microvesicles (30–100 nm) that have the capability to communicate intercellularly and transport cell components (i.e., miRNA, mRNA, proteins and DNA). Exosomes are found in nearly every cell type (i.e., mast cells, dendritic, tumor, and macrophages). There have been many studies that have shown the importance of exosome function as well as their unique packaging and targeting abilities. These characteristics make exosomes ideal candidates to act as biomarkers and therapeutics for disease. We will discuss the biogenesis, composition, and relationship of exosomes with non-viral microbial infections including gram-negative bacteria, gram-positive bacteria, Leishmania and Trypanosoma cruzi.
Exosomes are small extracellular vesicles that have emerged as an important tool for intercellular communication. In the central nervous system, exosomes can mediate glia and neuronal communication. Once released from the donor cell, exosomes can act as discrete vesicles and travel to distant and proximal recipient cells to alter cellular function. Microglia cells secrete exosomes due to stress stimuli of alcohol abuse. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of exosomes derived from microglia cell line BV-2. The BV-2 cells were cultured in exosome-free media and were either mock treated (control) or treated with 50 mM or 100 mM of alcohol for 48 and 72 h. Our results demonstrated that alcohol significantly impacted BV-2 cell morphology, viability, and protein content. Most importantly, our studies revealed that exosome biogenesis and composition was affected by alcohol treatment.
Exosomes play a crucial role in the progression of infectious diseases, as exosome release and biogenesis are affected by external factors, such as pathogenic infections. Pyrogens may aide in the progression of diseases by triggering inflammation, endothelial cell injury, and arterial plaque rupture, all of which can lead to acute coronary disease, resulting in cardiac tissue death and the onset of a cardiac event (CE). To better understand the effects of Gram-negative bacterial infections on exosome composition and biogenesis, we examined exosome characteristics after treatment of AC16 human cardiomyocytes with lipopolysaccharide (LPS), which served as a model system for Gram-negative bacterial infection. Using increasing doses (0, 0.1, 1, or 10 µg) of LPS, we showed that treatment with LPS substantially altered the composition of AC16-derived exosomes. Both the relative size and the quantity (particles/mL) of exosomes were decreased significantly at all tested concentrations of LPS treatment compared to the untreated group. In addition, LPS administration reduced the expression of exosomal proteins that are related to exosomal biogenesis. Conversely, we observed an increase in immunomodulators present after LPS administration. This evaluation of the impact of LPS on cardiac cell death and exosome composition will yield new insight into the importance of exosomes in a variety of physiological and pathological processes as it relates to disease progression, diagnosis, and treatment.
The antigenic determinants of Salmonella typhimurium OmpC were investigated by the analysis of cyanogen bromide (CNBr)-generated porin peptides with antiporin monoclonal antibodies (MAbs). We identified six bands (f1 to f6) with estimated molecular masses of 35.5, 31.0, 25.0, 22.5, 13.8, and 10.0 kDa, respectively. In addition, two small fragments (f7 and f8; 3.0 to 6.0 kDa) were detected only infrequently. The OmpC monomer or its CNBr-generated peptides were electrophoretically transferred to a polyvinylidene difluoride membrane and then subjected to amino acid composition analysis and N-terminal sequencing. A comparison of the amino acid composition data with known compositions of Escherichia coli and Salmonella typhi OmpC showed some differences; however, the amino acid sequences of 71 residues identified in S. typhimurium showed 88 and 98% identity with OmpC from E. coli and S. typhi, respectively. The screening of CNBr peptides with the 12 anti-(S. typhimurium) OmpC MAbs by Western blot (immunoblot), in conjunction with the prediction of the OmpC folding pattern based on the known three-dimensional structure of E. coli OmpF, showed that four MAbs reacted with surface-exposed epitopes on loops L2, L8, and L4 to L7, four MAbs reacted with a region in the eyelet structure on loop L3, and four MAbs reacted with the buried epitopes on transmembrane  strands. The MAbs reacting with surface-exposed loops showed no cross-reaction with E. coli OmpC, whose sequence has diverged extensively from that of S. typhi and (probably) S. typhimurium OmpC only in regions of the externally exposed loops. In contrast, MAbs reacting with transmembrane  strands, whose sequence is strongly conserved, showed strong cross-reaction with E. coli OmpC. These results show that comparison with the E. coli OmpF structure predicts the folding pattern of S. typhimurium OmpC rather accurately and that evolutionary divergence in sequences is confined to the external loops. The possible roles of these surface-exposed and buried epitopes as potentially useful antigenic regions for diagnostic assays and vaccine development are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.