We show that every d-dimensional probability distribution of bounded support can be generated through deep ReLU networks out of a 1-dimensional uniform input distribution. What is more, this is possible without incurring a cost—in terms of approximation error measured in Wasserstein-distance—relative to generating the d-dimensional target distribution from d independent random variables. This is enabled by a vast generalization of the space-filling approach discovered in Bailey and Telgarsky (in: Bengio (eds) Advances in neural information processing systems vol 31, pp 6489–6499. Curran Associates, Inc., Red Hook, 2018). The construction we propose elicits the importance of network depth in driving the Wasserstein distance between the target distribution and its neural network approximation to zero. Finally, we find that, for histogram target distributions, the number of bits needed to encode the corresponding generative network equals the fundamental limit for encoding probability distributions as dictated by quantization theory.
We show that every d-dimensional probability distribution of bounded support can be generated through deep ReLU networks out of a 1-dimensional uniform input distribution. What is more, this is possible without incurring a cost-in terms of approximation error measured in Wasserstein-distance-relative to generating the d-dimensional target distribution from d independent random variables. This is enabled by a vast generalization of the space-filling approach discovered in [2]. The construction we propose elicits the importance of network depth in driving the Wasserstein distance between the target distribution and its neural network approximation to zero. Finally, we find that, for histogram target distributions, the number of bits needed to encode the corresponding generative network equals the fundamental limit for encoding probability distributions as dictated by quantization theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.