Effective visuomotor coordination is a necessary requirement for the survival of many terrestrial, aquatic, and aerial animal species. We studied the kinematics of aerial pursuit in the blowfly Lucilia sericata using an actuated dummy as target for freely flying males. We found that the flies perform target tracking in the horizontal plane and target interception in the vertical plane. Our behavioural data suggest that the flies’ trajectory changes are a controlled combination of target heading angle and of the rate of change of the bearing angle. We implemented control laws in kinematic models and found that the contributions of proportional navigation strategy are negligible. We concluded that the difference between horizontal and vertical control relates to the difference in target heading angle the fly keeps constant: 0° in azimuth and 23° in elevation. Our work suggests that male Lucilia control both horizontal and vertical steerings by employing proportional controllers to the error angles. In horizontal plane, this controller operates at time delays as small as 10 ms, the fastest steering response observed in any flying animal, so far.
Background: Insects catching prey or mates on the wing perform one of the fastest behaviours observed in nature. Some dipteran flies are aerial acrobats specialized to detect, chase and capture their targets within the blink of an eye. Studies of aerial pursuits and its underlying sensorimotor control have been a long-standing subject of interest in neuroethology research. New method: We designed an actuated dummy target to trigger chasing flights in male blowflies. Our setup generates arbitrary 2D target trajectories in the horizontal plane combining translation up to 1 m/s and angular rotation up to 720°/s. Results: Using stereovision methods we reconstructed target and pursuer positions every 5 ms with a maximum 3D error of 5 mm. The pursuer's body pitch and yaw angles were resolved within an error range of 6deg. An embedded observation point provides a close-up view of the pursuer's final approach and enables us to measure its body roll angle. We observed banked turns and sideslip which have not been reported for chasing blowflies in the past. Comparison with existing method(s): Previous studies focused on pursuit along circular paths or interception of translating targets while our method allows us to generate more complex target trajectories. Measurements of body orientation in earlier accounts were limited to the heading direction while we extended the analysis to include the full body orientation during pursuit. Conclusions: Our setup offers an opportunity to investigate kinematics and governing visual parameters of chasing behaviour in species up to the size of blowflies under a large variety of experimental conditions. ⁎ Corresponding author at: Institut des Sciences du Mouvement, Bât soufflerie -CP 910,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.