Edge detection consists of a set of mathematical methods which identifies the points in a digital image where image brightness changes sharply. In the traditional edge detection methods such as the first-order derivative filters, it is easy to lose image information details and the second-order derivative filters are more sensitive to noise. To overcome these problems, the methods based on the fractional differential-order filters have been proposed in the literature. This paper presents the construction and implementation of the Prewitt fractional differential filter in the Asumu definition sense for SARS-COV2 image edge detection. The experiments show that these filters can avoid noise and detect rich edge details. The experimental comparison show that the proposed method outperforms some edge detection methods. In the next paper, we are planning to improve and combine the proposed filters with artificial intelligence algorithm in order to program a training system for SARS-COV2 image classification with the aim of having a supplemental medical diagnostic.
In this contribution an analysis of static properties of transversely isotropic, porous and nano-composites is considered. Present work features explicit formulas for effective coefficient in these types of composites. The reinforcements of the
This contribution describes the second stage of the creation of a language training system programmed in Python with the aim of application to speech therapy in spanish-speaking countries, starting the study in Cuba. The first stage of this research was carried out in Matlab by analyzing the dynamics of change of the centroids of the codebooks, extracted from words pronounced by a locutor. As second stage, the Variational Coefficient formula is used in order to estimate the percentage of effectiveness with which the announcer performs voice training. A modified approach to programming the variational coefficient is taken into account as a measure of dispersion of a group of vectors. The modification is given by taking the mean of the group of vectors as the vector that represents the phonetic boundaries of the word to be trained. Besides, a novel approach for word recognition is used, based on the K-Nearest Training Matrix (KNTM) algorithm that lays its foundations in the analysis of matrix similarity taken the Frobenius norm as a measure to distinguish similar or non-similar characteristics of a matrix with respect to a database of matrices. To reduce the computational cost of the program and speed up its proper functioning, the training matrices of the database are saved in files with a .tex extension, in this way after training process, the program should only read them and not recalculate them, which significantly reduces the running time of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.