Responsive materials have been used to generate structures with built-in complex geometries, linear actuators and microswimmers. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible . Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs. Here we explore geometric zero-energy modes to elicit rotary motion in elastic materials in the absence of a rigid wheel travelling around an axle. We show that prestrained polymer fibres closed into rings exhibit self-actuation and continuous motion when placed between two heat baths due to elastic deformations that arise from rotational-symmetry breaking around the rod's axis. Our findings illustrate a simple but robust model to create active motion in mechanically prestrained objects.
Titanium (Ti) is the most widely used metal in biomedical applications because of its biocompatibility; however, the significant difference in the mechanical properties between Ti and the surrounding tissues results in stress shielding which is detrimental for load-bearing tissues. In the current study, to attenuate the stress shielding effect, a new processing route was developed. It aimed at growing thick poly(methyl methacrylate) (PMMA) layers grafted on Ti substrates to incorporate a polymer component on Ti implants. However, the currently available methods do not allow the development of thick polymeric layers, reducing significantly their potential uses. The proposed route consists of an alkali activation of Ti substrates followed by a surface-initiated atom transfer radical polymerization using a phosphonic acid derivative as a coupling agent and a polymerization initiator and malononitrile as a polymerization activator. The average thickness of the grown PMMA layers is approximately 1.9 μm. The Ti activation-performed in a NaOH solution-leads to a porous sodium titanate interlayer with a hierarchical structure and an open microporosity. It promotes the covalent grafting reaction because of high hydroxyl groups' content and enables establishing a further mechanical interlocking between the growing PMMA layer and the Ti substrate. As a result, the produced graduated structure possesses high Ti/PMMA adhesion strength (∼260 MPa). Moreover, the PMMA layer is (i) thicker compared to those obtained with the previously reported techniques (∼1.9 μm), (ii) stable in a simulated body fluid solution, and (iii) biocompatible. This strategy opens new opportunities toward hybrid prosthesis with adjustable mechanical properties with respect to host bone properties for personalized medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.