Printing sensors and electronics over flexible substrates are an area of significant interest due to low-cost fabrication and possibility of obtaining multifunctional electronics over large areas. Over the years, a number of printing technologies have been developed to pattern a wide range of electronic materials on diverse substrates. As further expansion of printed technologies is expected in future for sensors and electronics, it is opportune to review the common features, the complementarities, and the challenges associated with various printing technologies. This paper presents a comprehensive review of various printing technologies, commonly used substrates and electronic materials. Various solution/dry printing and contact/noncontact printing technologies have been assessed on the basis of technological, materials, and process-related developments in the field. Critical challenges in various printing techniques and potential research directions have been highlighted. Possibilities of merging various printing methodologies have been explored to extend the lab developed standalone systems to high-speed roll-to-roll production lines for system level integration.
Sensor-laden wearable systems that are capable of providing continuous measurement of key physiological parameters coupled with data storage, drug delivery and feedback therapy have attracted huge interest. Here we report a stretchable wireless system for sweat pH monitoring, which is able to withstand up to 53% uniaxial strain and more than 500 cycles to 30% strain. The stretchability of the pH sensor patch is provided by a pair of serpentine-shaped stretchable interconnects. The pH sensing electrode is made of graphite-polyurethane composite, which is suitable for biosensor application. The sensing patch validated through in-depth electrochemical studies, exhibits a pH sensitivity of 11.13 ± 5.8 mV/pH with a maximum response time of 8 s. Interference study of ions and analyte (Na, K and glucose) in test solutions shows negligible influence on the pH sensor performance. The pH data can be wirelessly and continuously transmitted to smartphone through a stretchable radio-frequency-identification antenna, of which the radiating performance is stable under 20% strain, as proved by vector network analyzer measurement. To evaluate the full system, the pH value of a human sweat equivalent solution has been measured and wirelessly transmitted to a custom-developed smart phone App.
Flexible electronics has significantly advanced over the last few years, as devices and circuits from nanoscale structures to printed thin films have started to appear. Simultaneously, the demand for high-performance electronics has also increased because flexible and compact integrated circuits are needed to obtain fully flexible electronic systems. It is challenging to obtain flexible and compact integrated circuits as the silicon based CMOS electronics, which is currently the industry standard for high-performance, is planar and the brittle nature of silicon makes bendability difficult. For this reason, the ultra-thin chips from silicon is gaining interest. This review provides an in-depth analysis of various approaches for obtaining ultra-thin chips from rigid silicon wafer. The comprehensive study presented here includes analysis of ultra-thin chips properties such as the electrical, thermal, optical and mechanical properties, stress modelling, and packaging techniques. The underpinning advances in areas such as sensing, computing, data storage, and energy have been discussed along with several emerging applications (e.g., wearable systems, m-Health, smart cities and Internet of Things etc.) they will enable. This paper is targeted to the readers working in the field of integrated circuits on thin and bendable silicon; but it can be of broad interest to everyone working in the field of flexible electronics.
This paper presents and compares two different types of screen-printed flexible and conformable pressure sensors arrays. In both variants, the flexible pressure sensors are in the form of segmental arrays of parallel plate structuresandwiching the piezoelectric polymer polyvinylidene fluoride trifluoroethylene [P(VDF-TrFE)] between two printed metal layers of silver (Ag) in one case and the piezoresistive [multiwall carbon nanotube (MWCNT) mixed with poly(dimethylsiloxane (PDMS)] layer in the other. Each sensor module consists of 4 × 4 sensors array with 1-mm × 1-mm sensitive area of each sensor. The screen-printed piezoelectric sensors array exploits the change in polarization level of P(VDF-TrFE) to detect dynamic tactile parameter such as contact force. Similarly, the piezoresistive sensors array exploits the change in resistance of the bulk printed layer of MWCNT/PDMS composite. The two variants are compared on the basis of fabrication by printing on plastic substrate, ease of processing and handling of the materials, compatibility of the dissimilar materials in multilayers structure, adhesion, and finally according to the response to the normal compressive forces. The foldable pressure sensors arrays are completely realized using screen-printing technology and are targeted toward realizing low-cost electronic skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.