The purpose of this study is to assess, with elite crawl swimmers, the time limit at the minimum velocity corresponding to maximal oxygen consumption (TLim-vVO2max), and to characterize its main determinants. Eight subjects performed an incremental test for vVO2max assessment and, forty-eight hours later, an all-out swim at vVO2max until exhaustion. VO2 was directly measured using a telemetric portable gas analyzer and a visual pacer was used to help the swimmers keeping the predetermined velocities. Blood lactate concentrations, heart rate and stroke parameter values were also measured. TLim-vVO2max and vVO2max, averaged, respectively, 243.2 +/- 30.5 s and 1.45 +/- 0.08 m . s (-1). TLim-vVO2max correlated positively with VO2 slow component (r = 0.76, p < 0.05). Negative correlations were found between TLim-vVO2max and body surface area (r = - 0.80) and delta lactate (r = - 0.69) (p < 0.05), and with vVO2max (r = - 0.63), v corresponding to anaerobic threshold (r = - 0.78) and the energy cost corresponding to vVO2max (r = - 0.62) (p < 0.10). No correlations were observed between TLim-vVO2max and stroking parameters. This study confirmed the tendency to TLim-vVO2max be lower in the swimmers who presented higher vVO2max and vAnT, possibly explained by their higher surface area, energy cost and anaerobic rate. Additionally, O2SC seems to be a determinant of TLim-vVO2max.
Physical exercise is advised as a preventive and therapeutic strategy against aging-induced bone weakness. In this study we examined the effects of 8-month multicomponent training with weight-bearing exercises on different risk factors of falling, including muscle strength, balance, agility, and bone mineral density (BMD) in older women. Participants were randomly assigned to either an exercise-training group (ET, n = 30) or a control group (CON, n = 30). Twenty-seven subjects in the ET group and 22 in the CON group completed the study. Training was performed twice a week and was designed to load bones with intermittent and multidirectional compressive forces and to improve physical function. Outcome measures included lumbar spine and proximal femoral BMD (by dual X-ray absorptiometry), muscle strength, balance, handgrip strength, walking performance, fat mass, and anthropometric data. Potential confounding variables included dietary intake, accelerometer-based physical activity, and molecularly defined lactase nonpersistence. After 8 months, the ET group decreased percent fat mass and improved handgrip strength, postural sway, strength on knee flexion at 180°/s, and BMD at the femoral neck (+2.8%). Both groups decreased waist circumference and improved dynamic balance, chair stand performance, strength on knee extension for the right leg at 180°/s, and knee flexion for both legs at 60°/s. No associations were found between lactase nonpersistence and BMD changes. Data suggest that 8 months of moderate-impact weight-bearing and multicomponent exercises reduces the potential risk factors for falls and related fractures in older women.
Exercise has been suggested as a therapeutic approach to attenuate bone loss induced by bariatric surgery (BS), but its effectiveness remains unclear. Our aim was to determine if an exercise‐training program could induce benefits on bone mass after BS. Eighty‐four patients, submitted to gastric bypass or sleeve gastrectomy, were randomized to either exercise (EG) or control group (CG). One month post‐BS, EG underwent a 11‐month supervised multicomponent exercise program, while CG received only standard medical care. Patients were assessed before BS and at 1, 6, and 12 months post‐BS for body composition, areal bone mineral density (BMD), bone turnover markers, calciotropic hormones, sclerostin, bone material strength index, muscle strength, and daily physical activity. A primary analysis was conducted according to intention‐to‐treat principles and the primary outcome was the between‐group difference on lumbar spine BMD at 12 months post‐BS. A secondary analysis was also performed to analyze if the exercise effect depended on training attendance. Twelve months post‐BS, primary analysis results revealed that EG had a higher BMD at lumbar spine (+0.024 g∙cm−2 [95% confidence interval (CI) 0.004, 0.044]; p = .015) compared with CG. Among total hip, femoral neck, and 1/3 radius secondary outcomes, only 1/3 radius BMD improved in EG compared with CG (+0.013 g∙cm−2 [95% CI 0.003, 0.023]; p = .020). No significant exercise effects were observed on bone biochemical markers or bone material strength index. EG also had a higher lean mass (+1.5 kg [95% CI 0.1, 2.9]; p = .037) and higher number of high impacts (+51.4 [95% CI 6.6, 96.1]; p = .026) compared with CG. In addition, secondary analysis results suggest that exercise‐induced benefits may be obtained on femoral neck BMD but only on those participants with ≥50% exercise attendance compared with CG (+5.3% [95% CI 2.0, 8.6]; p = .006). Our findings suggest that an exercise program is an effective strategy to ameliorate bone health in post‐BS patients. © 2020 American Society for Bone and Mineral Research (ASBMR).
Anaerobic threshold is widely used for diagnosis of swimming aerobic endurance but the precise incremental protocols step duration for its assessment is controversial. A physiological and biomechanical comparison between intermittent incremental protocols with different step lengths and a maximal lactate steady state (MLSS) test was conducted. 17 swimmers performed 7×200, 300 and 400 m (30 s and 24 h rest between steps and protocols) in front crawl until exhaustion and an MLSS test. The blood lactate concentration values ([La-]) at individual anaerobic threshold were 2.1±0.1, 2.2±0.2 and 1.8±0.1 mmol.l - 1 in the 200, 300 and 400 m protocols (with significant differences between 300 and 400 m tests), and 2.9±1.2 mmol.l - 1 at MLSS (higher than the incremental protocols); all these values are much lower than the traditional 4 mmol.l - 1 value. The velocities at individual anaerobic threshold obtained in incremental protocols were similar (and highly related) to the MLSS, being considerably lower than the velocity at 4 mmol.l - 1. Stroke rate increased and stroke length decreased throughout the different incremental protocols. It was concluded that it is valid to use intermittent incremental protocols of 200 and 300 m lengths to assess the swimming velocity corresponding to individual anaerobic threshold, the progressive protocols tend to underestimate the [La-] at anaerobic threshold assessed by the MLSS test, and swimmers increase velocity through stroke rate increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.