New ballistic protection systems based on alternative materials have been recently developed. One of the industry’s objectives is to develop lighter and stronger defensive systems, which allow higher mobility and safety for both vehicles and humans. This work studies the behavior of an aerospace protection against a projectile impact, seeking an optimized construction. The Al-Qureshi et al. model suggests a ceramic-metal layer system and describes its behavior. The literature shows, due to the considered parameters, the erosion tax and the loss of velocity. The phenomenon is described in steps, presenting particular effects for each. The equations are not equal between the stages showing different properties. The present work searches for a solution that can show the expression for mass and velocity, for each stage of the phenomenon. The results from the numerical method used were plotted and analyzed. The treatment was performed using Maplesoft Maple software. As a result, graphs were generated, which allow a deeper analysis of the model. Finally, advance in the knowledge of fracture processes in materials by high velocity impact can be concluded. This fact permits developments in materials that can perform shock absorption.
The behavior of ceramic-metal protection against a projectile impact is modeled. The model takes into account the mass and velocity for each stage of the phenomenon. A former model was modified considering more realistic parameters such as geometries and deformation profile. To analyze the model, simulations on different parameters have been run. The impact results of different ballistic projectiles were simulated, and the movement was plotted. In addition, a deterministic simulation on the mechanical properties of the back metal plate properties was done.
A study on the strength of ceramic fiber bundles based on experimental and computational procedures is presented. Tests were performed on single filaments and bundles composed of two fibers with different nominal fiber counts. A method based on fiber rupture signals was developed to estimate the amount of filament rupture during the test. Through this method, the fiber bundle true strength was determined and its variation with the initial fiber count observed. By using different load-sharing models and the single filament data as input parameter, simulations were also developed to verify this behavior. Through different approaches between experiments and simulations, it was noted that the fiber bundle true strength increased with the fiber count. Moreover, a variation of the fibers’ final proportion in the bundles relative to the initial amount was verified in both approaches. Finally, discussions on the influence of different load-sharing models on the results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.