As key-components of the urban-drainage system, storm-drains and manholes are essential to the hydrological modeling of urban basins. Accurately mapping of these objects can help to improve the storm-drain systems for the prevention and mitigation of urban floods. Novel Deep Learning (DL) methods have been proposed to aid the mapping of these urban features. The main aim of this paper is to evaluate the state-of-the-art object detection method RetinaNet to identify storm-drain and manhole in urban areas in street-level RGB images. The experimental assessment was performed using 297 mobile mapping images captured in 2019 in the streets in six regions in Campo Grande city, located in Mato Grosso do Sul state, Brazil. Two configurations of training, validation, and test images were considered. ResNet-50 and ResNet-101 were adopted in the experimental assessment as the two distinct feature extractor networks (i.e., backbones) for the RetinaNet method. The results were compared with the Faster R-CNN method. The results showed a higher detection accuracy when using RetinaNet with ResNet-50. In conclusion, the assessed DL method is adequate to detect storm-drain and manhole from mobile mapping RGB images, outperforming the Faster R-CNN method. The labeled dataset used in this study is available for future research.
Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January 2020 to October 2020, a burned area in Pantanal of approximately 40,606 km2. This program also provides daily data of active fire (fires spots) from a methodology that uses MODIS (Aqua and Terra) sensor data as reference satellites, which presents limitations mainly when dealing with small active fires. Remote sensing researches on active fire dynamics have contributed to wildfire comprehension, despite generally applying low spatial resolution data. Convolutional Neural Networks (CNN) associated with high- and medium-resolution remote sensing data may provide a complementary strategy to small active fire detection. We propose an approach based on object detection methods to map active fire in the Pantanal. In this approach, a post-processing strategy is adopted based on Non-Max Suppression (NMS) to reduce the number of highly overlapped detections. Extensive experiments were conducted, generating 150 models, as five-folds were considered. We generate a public dataset with 775-RGB image patches from the Wide Field Imager (WFI) sensor onboard the China Brazil Earth Resources Satellite (CBERS) 4A. The patches resulted from 49 images acquired from May to August 2020 and present a spatial and temporal resolutions of 55 m and five days, respectively. The proposed approach uses a point (active fire) to generate squared bounding boxes. Our findings indicate that accurate results were achieved, even considering recent images from 2021, showing the generalization capability of our models to complement other researches and wildfire databases such as the current program Queimadas in detecting active fire in this complex environment. The approach may be extended and evaluated in other environmental conditions worldwide where active fire detection is still a required information in fire fighting and rescue initiatives.
Este estudo tem como objetivo verificar a convergência entre a diminuição da Taxa de Mortalidade Infantil e o aumento do Índice de Desenvolvimento Humano Municipal nas Grandes Regiões e Unidades da Federação no Brasil no período de 2000 a 2010. O tipo de estudo adotado foi o ecológico. Conclui-se que houve redução das Taxas de Mortalidade Infantil e aumento do Índice de Desenvolvimento Humano Municipal, de forma não homogênea nas áreas de estudo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.