This article presents the design of a field programmable gate array (FPGA)-based prototype of a system on chip (SoC) capable of behaving as one of the nerve centres comprising the neuroregulatory system in humans: the cortical-diencephalic nerve centre. The neuroregulatory system is a complex nerve system consisting of a heterogeneous group of nerve centres. These centres are distributed throughout the length of the spinal cord, are autonomous, communicate via interneurons, and govern and regulate the behaviour of multiple organs and systems in the human body. As a result of years of study of the functioning and composition of the neuroregulatory system of the lower urinary tract (LUT), the centres that regulate this system have been isolated. The objective of this study is to understand the individual functioning of each centre in order to create a general model of the neuroregulatory system that is capable of operating at the level of the actual nerve centre. This model represents an advancement of the current black box models that do not allow for isolated or independent treatment of system dysfunction. In this study, we re-visit our research into the viability of the hardware design of one of these centres-the cortical-diencephalic centre. We describe this hardware because functioning of the centre is completely configurable and programmable, which validates the design for other centres that comprise the neuroregulatory system. In this document, we succinctly present the formal model of the centre, propose a hardware design and an FPGA-based prototype, construct a testing and simulation environment to evaluate it and, lastly, analyse and contrast the results using data obtained from real patients, verifying that the functional behaviour fits that observed in humans.
El sistema de representación en los radares modernos se realiza a partir de la obtención de señales digitales. En el caso de los radares de seguimiento la actualización de la representación se realiza en el orden de las décimas de milisegundos. Para lograr la actualización del display en tiempo real el proceso de adquisición, procesamiento de la señal y representación tiene que cumplir con la exigencia de tiempo de exploración del radar. El objetivo del trabajo es lograr la visualización de la información para un radar en tiempo real empleando la placa Odroid XU4. Se utilizó el método de programación paralela, mediante la creación de hilos en el Entorno de Desarrollo Integrado Qt Creator y el empleo del patrón de programación paralela segmentación de cauce. Esto permitió el uso eficiente de los recursos de cómputo, obteniéndose una disminución del tiempo de ejecución y una mayor aceleración con respecto a la variante secuencial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.