The aim of this paper was to investigate the effectiveness of pyrolyzed low-cost food waste natural materials from the food industry on the removal of chlorine from water. Biochar was produced after pyrolysis at 850 oC from malt spent rootlets (MSR), walnut shells, and apricot, olive, carob and grape kernels. The biochars were characterized for their surface area, microporosity, functional groups and pH. Continuous flow column experiments were conducted at varying flow rates to evaluate the efficiency of biochars to remove free and total chlorine. The initial free and total chlorine concentrations in water fed to the columns were 2.0 and 2.2 mg/L, respectively. The chlorine removal of free and total chlorine of all materials tested ranged from 76 to 92% and 80 to 95%, respectively, with the MSR exhibiting the highest removal. MSR biochar was subjected to the highest cumulative water volume passed through the column (162 L/g) and exhibited the highest total chlorine removal capacity (6 to 330 mg/g). Olive kernel also reached high chlorine removal (99%), while apricot kernel, grape kernel, carob seed and pulp presented poor chlorine removals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.