Most studies on Salmonella enterica serovar Typhimurium infection focus on strains ATCC SL1344 or NTCC 12023 (ATCC 14028). We have compared the abilities of these strains to induce membrane ruffles and invade epithelial cells. S. Typhimurium strain 12023 is less invasive and induces smaller membrane ruffles on MDCK cells compared with SL1344. Since the SPI-1 effector SopE is present in SL1344 and absent from 12023, and SL1344 sopE mutants have reduced invasiveness, we investigated whether 12023 is less invasive due to the absence of SopE. However, comparison of SopE+ and SopE− S. Typhimurium strains, sopE deletion mutants and 12023 expressing a sopE plasmid revealed no consistent relationship between SopE status and relative invasiveness. Nevertheless, absence of SopE was closely correlated with reduced size of membrane ruffles. A PprgH–gfp reporter revealed that relatively few of the 12023 population (and that of the equivalent strain ATCC 14028) express SPI-1 compared to other S. Typhimurium strains. Expression of a PhilA–gfp reporter mirrored that of PprgH–gfp in 12023 and SL1344, implicating reduced signalling via the transcription factor HilA in the heterogeneous SPI-1 expression of these strains. The previously unrecognized strain heterogeneity in SPI-1 expression and invasiveness has important implications for studies of Salmonella infection.
We have investigated the impact of plasmids and GFP expression on invasion of cultured epithelial cells by Salmonella enterica Typhimurium strain SL1344. The invasiveness of SL1344 carrying plasmids derived from pBR322, encoding promoterless GFP or constitutively expressed rpsM-GFP, was compared under optimal growth conditions with that of SL1344(pBR322), unmodified SL1344 and a strain with chromosome-integrated rpsM-GFP. The strain carrying pBR322 exhibited normal invasion, but the presence of modified plasmids impaired invasiveness, and impairment was exacerbated by plasmid-encoded chloramphenicol resistance (Cm R ). Using a different antibiotic resistance marker, kanamycin (Km R ), did not impair invasiveness. Despite the effect of plasmid-encoded Cm R , the strain containing chromosomally encoded GFP, also carrying a Cm R gene, was as invasive as the wild-type. To investigate the mechanism by which plasmid carriage decreases invasion, we monitored SPI-1 gene expression using prgH promoter activity as an index of SPI-1 activity. An SL1344 strain with a chromosome-integrated prgH : : gfp reporter construct exhibited lower GFP expression during exponential phase when carrying plasmids incorporating Cm R or gfp, mirroring invasion data. These data provide evidence that suppression of SPI-1 gene expression is a major factor in the loss of invasiveness associated with plasmid carriage. Our findings also indicate that some plasmids, especially those carrying Cm R , should be used with caution, as virulence traits and gene expression may be affected by their presence. Integration of reporter proteins into the bacterial chromosome, however, appears to circumvent the adverse effects observed with plasmids.
Salmonella enterica serovar Typhimurium (S. Typhimurium) remains an important cause of foodborne infection in the developed world. In order to establish infection within a host, Salmonella must survive and recover from a range of environmental stresses. S. Typhimurium strain SL1344 is among the most extensively studied pathogenic Salmonella strains, while S. Typhimurium phage type DT104 is an important type that has been associated with pandemic spread and a high number of food-borne disease outbreaks over the last two decades. In this study, we have compared the abilities of these two S. Typhimurium types to recover from stress exposures commonly encountered in food production, including 685 mM NaCl, pH 3.8, low temperature (6 6C) and combinations thereof. Following removal from prolonged (8 days) stress, DT104 cultures that had been exposed to low temperature, with or without additional stress, resumed exponential growth more rapidly than SL1344 cultures exposed to the same conditions. SL1344 showed higher levels of filamentation than DT104 in response to NaCl exposure at low temperature. Further, SL1344 incurred higher levels of membrane damage in response to elevated NaCl and pH 3.8 at both temperatures compared with DT104. However, both strains recovered normal cell division and membrane integrity within 6 h when all stresses were removed. Expression of the Salmonella pathogenicity island 1 gene prgH, the first gene in the prg/org operon, was monitored using a chromosomal reporter in which gfp + expression was driven by the prgH promoter. Recovery of prgH expression was comparable for SL1344 and DT104 exposed to stress at 22 6C. However, DT104 cultures exposed to pH 3.8 or combined NaCl and low-pH stress at low temperature resumed prgH expression more rapidly than SL1344. Both strains recovered maximal levels of prgH expression after 6 h recovery from all stresses and, interestingly, maximal levels of prgH expression were significantly higher in SL1344, consistent with prgH expression in late-exponential, non-stressed SL1344 and DT104 cultures. Together, these data show that S. Typhimurium is capable of rapid recovery from environmental and food-related stresses, and give insight into the enhanced ability of DT104 compared with SL1344 to adapt to such stresses, which may contribute to the success of this globally disseminated pathogenic phage type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.