Growth factors play an important role in supraspinatus tendon-to-bone healing. The objective of this study was to evaluate the temporal expression of 8 different growth factors in tendon-to-bone healing in an animal model. We hypothesize that growth factors exhibit unique temporal profiles that correlate to specific stages in the acute process of the supraspinatus tendon. To test this hypothesis, rats underwent bilateral supraspinatus tendon detachment and repair. Animals were euthanized at 1, 2, 4, 8, and 16 weeks. Immunohistochemical staining was done using antibodies for basic fibroblast growth factor (bFGF), bone morphogenetic protein 12 (BMP-12), BMP-13, BMP-14, cartilage oligomeric matrix protein (COMP), connective tissue growth factor (CTGF), platelet-derived growth factor-B (PDGF-B), and transforming growth factor-beta1 (TGF-beta1). Immunoassays showed an increase in the expression of all growth factors at 1 week, followed by a return to control or undetectable levels by 16 weeks in both the insertion and midsubstance. Future studies will investigate the different impacts of growth factor expression in tendon to bone healing.
The interactions of small leucine-rich proteoglycans (SLRPs) with collagen fibrils, their association with water, and their role in fibrillogenesis suggests that SLRPs may play an important role in tendon mechanics. Some studies have assessed the role of SLRPs in the mechanical response of the tendon, but the relationships between sophisticated mechanics, assembly of collagen, and SLRPs have not been well characterized. Decorin content was varied in a dose dependent manner using decorin null, decorin heterozygote, and wild type mice. Quantitative measures of mechanical (tension and compression), compositional, and structural changes of the mouse patellar tendon were evaluated. Viscoelastic, tensile dynamic modulus was increased in the decorin heterozygous tendons compared to wild type. These tendons also had a significant decrease in total collagen and no structural changes compared to wild type. Decorin null tendons did not have any mechanical changes; however, a significant decrease in the average fibril diameter was found. No differences were seen between genotypes in elastic or compressive properties, and all tendons demonstrated viscoelastic mechanical dependence on strain rate and frequency. These results suggest that decorin, a member of the SLRP family, plays a role in tendon viscoelasticity that cannot be completely explained by its role in collagen fibrillogenesis. In addition, reductions in decorin do not cause large changes in indentation compressive properties, suggesting that other factors contribute to these properties. Understanding these relationships may ultimately help guide development of tissue engineered constructs or treatment modalities.
In this model, immediate postoperative passive motion was found to be detrimental to passive shoulder mechanics. We speculate that passive motion results in increased scar formation in the subacromial space, thereby resulting in decreased range of motion and increased joint stiffness. Passive motion had no effect on collagen organization or tendon mechanical properties measured six weeks after surgery.
Tendons have complex mechanical properties that depend on their structure and composition. Some studies have assessed the role of small leucine-rich proteoglycans (SLRPs) in the mechanical response of tendon, but the relationships between sophisticated mechanics, assembly of collagen and SLRPs have not been well characterized. In this study, biglycan gene expression was varied in a dose dependent manner using biglycan null, biglycan heterozygote and wild type mice. Measures of mechanical (tension and compression), compositional and structural changes of the mouse patellar tendon were evaluated. Viscoelastic, tensile dynamic modulus was found to be increased in the biglycan heterozygous and biglycan null tendons compared to wild type. Gene expression analyses revealed biglycan gene expression was closely associated in a dose-dependent allelic manner. No differences were seen between genotypes in elastic or compressive properties or quantitative measures of collagen structure. These results suggest that biglycan, a member of the SLRP family, plays a role in tendon viscoelasticity that cannot be completely explained by its role in collagen fibrillogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.