We describe a gonorrhoea case with combined high-level azithromycin resistance and ceftriaxone resistance. In February 2018, a heterosexual male was diagnosed with gonorrhoea in the United Kingdom following sexual intercourse with a locally resident female in Thailand and failed treatment with ceftriaxone plus doxycycline and subsequently spectinomycin. Resistance arose from two mechanisms combining for the first time in a genetic background similar to a commonly circulating strain. Urgent action is essential to prevent further spread.
We describe detection in the United Kingdom (UK) of the drug-resistant Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate azithromycin resistance. Two female patients developed infection following contact with UK-resident men from the same sexual network linked to travel to Ibiza, Spain. One case failed treatment with ceftriaxone, and azithromycin and gentamicin, before successful treatment with ertapenem. Both isolates had indistinguishable whole-genome sequences. Urgent action is essential to contain this drug-resistant strain.
Pyomyositis is a severe bacterial infection of skeletal muscle, commonly affecting children in tropical regions, predominantly caused by Staphylococcus aureus. To understand the contribution of bacterial genomic factors to pyomyositis, we conducted a genome-wide association study of S. aureus cultured from 101 children with pyomyositis and 417 children with asymptomatic nasal carriage attending the Angkor Hospital for Children, Cambodia. We found a strong relationship between bacterial genetic variation and pyomyositis, with estimated heritability 63.8% (95% CI 49.2–78.4%). The presence of the Panton–Valentine leucocidin (PVL) locus increased the odds of pyomyositis 130-fold (p=10-17.9). The signal of association mapped both to the PVL-coding sequence and to the sequence immediately upstream. Together these regions explained over 99.9% of heritability (95% CI 93.5–100%). Our results establish staphylococcal pyomyositis, like tetanus and diphtheria, as critically dependent on a single toxin and demonstrate the potential for association studies to identify specific bacterial genes promoting severe human disease.
Escherichia coli and other Enterobacteriaceae are diverse species with “open” pangenomes, where genes move intra- and interspecies via horizontal gene transfer. However, most analyses focus on clinical isolates. The pangenome dynamics of natural populations remain understudied, despite their suggested role as reservoirs for antimicrobial resistance (AMR) genes. Here, we analyze near-complete genomes for 827 Enterobacteriaceae (553 Escherichia and 274 non-Escherichia spp.) with 2292 circularized plasmids in total, collected from 19 locations (livestock farms and wastewater treatment works in the United Kingdom) within a 30-km radius at three time points over a year. We find different dynamics for chromosomal and plasmid-borne genes. Plasmids have a higher burden of AMR genes and insertion sequences, and AMR-gene-carrying plasmids show evidence of being under stronger selective pressure. Environmental niche and local geography both play a role in shaping plasmid dynamics. Our results highlight the importance of local strategies for controlling the spread of AMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.