Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ARSB) gene. ARSB is a lysosomal enzyme involved in the degradation of the glycosaminoglycans (GAG) dermatan and chondroitin sulfate. ARSB mutations reduce enzyme function and GAG degradation, causing lysosomal storage and urinary excretion of these partially degraded substrates. Disease onset and rate of progression is variable, producing a spectrum of clinical presentation. In this study, 105 MPS VI patients-representing about 10% of the world MPS VI population-were studied for molecular genetic and biochemical parameters. Direct sequencing of patient genomic DNA was used to identify ARSB mutations. In total, 83 different disease-causing mutations were found, 62 of which were previously unknown. The novel sequence changes included: 38 missense mutations, five nonsense mutations, 11 deletions, one insertion, seven splice-site mutations, and four polymorphisms. ARSB mutant protein and residual activity were determined on fibroblast extracts for each patient. The identification of many novel mutations unique to individuals/their families highlighted the genetic heterogeneity of the disorder and provided an appropriate cohort to study the MPS VI phenotypic spectrum. This mutation analysis has identified a clear correlation between genotype and urinary GAG that can be used to predict clinical outcome.
The formation of cholesterol and sphingolipids into specialized liquid-ordered membrane microdomains (rafts) has been proposed to function in the intracellular sorting and transport of proteins and lipids. Defined by biochemical criteria, rafts resist solubilization in nonionic detergents, enabling them to be isolated as detergent-resistant membranes (DRM). In this study, we characterized the lipid composition of DRM from a cell model of the sphingolipid storage disorder, Gaucher disease, in which the catabolism of the sphingolipid glucosylceramide (GC) is impaired. In this cell model, we showed that GC accumulated primarily in the DRM, with smaller secondary increases in ceramide, dihexosylceramide, trihexosylceramide, and phosphatidylglycerol. This suggested that not only was lipid metabolism altered as a consequence of the cellsʼ inability to degrade GC, but this affected the DRM rather than other regions of the membrane. This increase in lipids in the DRM may be responsible for the altered lipid and protein sorting seen in Gaucher disease. Analysis of individual lipid species revealed preservation of the shorter and fully saturated fatty acid species in the DRM, suggesting that the highly ordered and tightly packed nature of the DRM is maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.