Background
Bone stress injuries are common in track and field athletes. Knowledge of risk factors and correlation of these to magnetic resonance imaging (MRI) grading could be helpful in determining recovery time.
Purpose
To examine the relationships between MRI grading of bone stress injury with clinical risk factors and time to return to sport in collegiate track and field athletes.
Study Design
Prospective cohort over 5 years.
Methods
Two hundred and eleven male and female collegiate track and field and cross-country athletes were followed prospectively through their competitive seasons. All athletes had a pre-participation history, physical exam, and anthropometric measurements obtained annually. An additional questionnaire was completed regarding nutritional behaviors, menstrual patterns and prior injuries, as well as a 3-day diet record. Dual energy X-ray absorptiometry was obtained at baseline and each year of participation in the study. Athletes with clinical evidence of bone stress injuries had plain radiographs. If radiographs were negative, MRI was obtained. Bone stress injuries were evaluated by two independent radiologists utilizing an MRI grading system. MRI grading and risk factors were evaluated to identify predictors of time to return to sport.
Results
Thirty-four (12 males, 22 females) of the 211 collegiate athletes sustained 61 bone stress injuries during the 5-year study period. The average prospective assessment for participants was 2.1 years. MRI grade and total body bone mineral density (BMD) emerged as significant and independent predictors of time to return to sport in the multiple regression model. Specifically, the higher the MRI grade, the longer the recovery time (p<0.002). Location of bone injury at predominantly trabecular sites of the femoral neck, pubic bone and sacrum (p<0.001), and lower total body BMD (p<0.029) independently predicted prolonged time to return to sport.
Conclusions
Higher MRI grade, lower BMD, and skeletal sites of predominant trabecular bone structure were independently associated with delayed recovery of bone stress injuries in track and field athletes. Knowledge of these risk factors, as well as nutritional and menstrual factors, can be clinically useful in determining time to return to sport.
BackgroundSurgical resection with curative intent for giant cell tumor of bone (GCTB) may be associated with severe morbidity. This interim analysis evaluated reduction in surgical invasiveness after denosumab treatment in patients with resectable GCTB.MethodsPatients with primary or recurrent GCTB, for whom the initially planned surgery was associated with functional compromise or morbidity, received denosumab 120 mg subcutaneously every 4 weeks (additional doses on days 8 and 15 of the first cycle). Planned and actual GCTB-related surgical procedures before and after denosumab treatment were reported. Patients were followed for surgical outcome, adverse events, and recurrence following resection.ResultsOverall, 222 patients were evaluable for surgical downstaging (54 % were women; median age 34 years). Lesions (67 % primary and 33 % recurrent) were located in the axial (15 %) and appendicular skeleton (85 %). At the data cutoff date, most patients had not yet undergone surgery (n = 106; 48 %) or had a less morbid procedure (n = 84; 38 %) than originally planned. Median (interquartile range) time on denosumab was 19.5 (12.4–28.6) months for the 106 patients who had not undergone surgery and were continuing on monthly denosumab. Native joint preservation was 96 % (n = 24/25) for patients with planned joint/prosthesis replacement and 86 % (n = 30/35) for patients with planned joint resection/fusion. Of the 116 patients who had surgery (median postsurgical follow-up 13.0 [8.5–17.9] months), local recurrence occurred in 17 (15 %) patients.ConclusionFor patients with resectable GCTB, neoadjuvant denosumab therapy resulted in beneficial surgical downstaging, including either no surgery or a less morbid surgical procedure.Electronic supplementary materialThe online version of this article (doi:10.1245/s10434-015-4634-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.