More than 350 million people are chronically infected with hepatitis B virus, and dysfunctional T cell responses contribute to persistent viral infection and immunopathogenesis in chronic hepatitis B (CHB). However, the underlying mechanisms of T cell hyporesponsiveness remain largely undefined. Given the important role of microRNA-146a (miR-146a) in diverse aspects of lymphocyte function, we investigated the potential role and mechanism of miR-146a in regulating T cell immune responses in CHB. We found that miR-146a expression in T cells is significantly upregulated in CHB compared with healthy controls, and miR-146a levels were correlated with serum alanine aminotransaminase levels. Both inflammatory cytokines and viral factors led to miR-146a upregulation in T cells. Stat1 was identified as a miR-146a target that is involved in antiviral cytokine production and the cytotoxicity of CD4+ and CD8+ T cells. In vitro blockage of miR-146a in T cells in CHB greatly enhanced virus-specific T cell activity. Therefore, our work demonstrates that miR-146a upregulation in CHB causes impaired T cell function, which may contribute to immune defects and immunopathogenesis during chronic viral infection.
Background: Platelets in patients with type 2 diabetes mellitus (DM2) are characterized by increased activation and aggregation, which tends to be associated with a high morbidity and mortality due to cardiovascular disease (CVD). Moreover, a large proportion of DM2 patients show an inadequate response to standard antiplatelet treatments, contributing to recurrent cardiovascular events. In our previous study, we indicated that Salvianolic acid A (SAA) presents an antiplatelet effect in healthy volunteers. However, whether it can inhibit "activated platelets" with a pathologic status has not been explored. Therefore, this study was designed to investigate the antiplatelet effect of SAA and its diabetic complication-related difference in DM2.Methods: Forty patients diagnosed with DM2 from January 2018 to April 2018 were recruited. Fibrinogen-binding (PAC-1) and P-selectin (CD62p) flow cytometry reagents were measured under resting and stimulated conditions by flow cytometry, while agonist-induced platelet aggregation was conducted by light transmission aggregometry. Before all these measurements were conducted, all platelet samples were preincubated with a vehicle or SAA for 10 min. Additionally, the diabetic complication-related difference in the antiplatelet effect of SAA was further studied in enrolled patients. Results:The expressions of PAC-1 and CD62p were elevated in DM2, as well as the maximal platelet aggregation. In addition, SAA decreased the expressions of PAC-1 and CD62p, which were enhanced by ADP and thrombin (all P < 0.01). It also reduced the platelet aggregation induced by ADP (P < 0.001) and thrombin (P < 0.05). Comparing the antiplatelet effect of SAA on DM2, with and without diabetic complications, no statistically significant difference was found (all P > 0.05). Conclusions:The present study demonstrated that SAA can inhibit platelet activation and aggregation in patients with DM2, and the inhibition did not abate for the existence of diabetic complications.
Pulmonary arterial hypertension (PaH) is a fatal syndrome resulting from enhanced pulmonary arterial pressure and pulmonary vessel resistance. Perivascular inflammation and extracellular matrix deposition are considered to be the crucial pathophysiologic bases of PaH. Formononetin (FMn), a natural phytoestrogen isolated from red clover (Trifolium pratense), has a variety of proapoptotic, anti-inflammatory and anti-tumor activities. However, the therapeutic effectiveness of FMn for PaH remains unclear. in the present study, 60 mg/kg monocrotaline (McT) was first used to induce PaH in rats, and then all rats were treated with different concentrations of FMn (10, 30 and 60 mg/kg/day). at the end of this study, the hemodynamics and pulmonary vascular morphology of rats were evaluated. Specifically, matrix metalloproteinase (MMP)2, transforming growth factor β1 (TGFβ1) and MMP9 were measured using western blot and immunohistochemical staining. collagen type I, collagen type III, fibronectin, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, erK and nF-κB were quantified using western blotting. The results demonstrated that FMN significantly alleviated the changes of hemodynamics and pulmonary vascular morphology, and decreased the McT-induced upregulations of TGFβ1, MMP2 and MMP9 expression levels. Meanwhile, the expression levels of collagen type I, collagen type III and fibronectin in rat lungs decreased after FMn treatment. Furthermore, the phosphorylated erK and nF-κB also decreased after FMn treatment. Taken together, the present study indicated that FMn serves a therapeutic role in the McT-induced PaH in rats via suppressing pulmonary vascular remodeling, which may be partially related to erK and nF-κB signals.
Vascular remodeling (VR), induced by the massive proliferation and reduced apoptosis of vascular smooth muscle cells (VSMCs), is primarily responsible for many cardiovascular conditions, such as restenosis and pulmonary arterial hypertension. Sodium selenite (SSE) is an inorganic selenium, which can block proliferation and stimulate apoptosis of tumor cells; still, its protective effects on VR remains unknown. In this study, we established rat models with carotid artery balloon injury and monocrotaline induced pulmonary arterial hypertension and administered them SSE (0.25, 0.5, or 1 mg/kg/day) orally by feeding tube for 14 consecutive days. We found that SSE treatment greatly ameliorated the development of VR as evidenced by an improvement of its characteristic features, including elevation of the ratio of carotid artery intimal area to medial area, right ventricular hypertrophy, pulmonary arterial wall hypertrophy and right ventricular systolic pressure. Furthermore, PCNA and TUNEL staining of the arteries showed that SSE suppressed proliferation and enhanced apoptosis of VSMCs in both models. Compared with the untreated VR rats, lower expression of PCNA and CyclinD1, but higher levels of Cleaved Caspase-3 and Bax/Bcl-2 were observed in the SSE-treated rats. Moreover, the increased protein expression of MMP2, MMP9, p-AKT, p-ERK, p-GSK3β and β-catenin that occurred in the VR rats were significantly inhibited by SSE. Collectively, treatment with SSE remarkably attenuates the pathogenesis of VR, and this protection may be associated with the inhibition of AKT and ERK signaling and prevention of VSMC’s dysfunction. Our study suggest that SSE is a potential agent for treatment of VR-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.