Transformational techniques unifying synthesis of two-state DC-DC converters and analytical synthesis techniques allowing generation of all possible converters meeting a certain criteria already exist. The analysis of a family of converters derived from a single converter cell has also been unified. Current waveforms generated by the family of converters were shown to be related. However, a concept or basic building blocks that facilitate unified synthesis, analysis, prediction of current waveforms and assignment of switch states over a very wide range of DC-DC converters is still lacking. This study will propose three 3-terminal basic building blocks and one 3-terminal filter block. It will be shown that between them, they are sufficient for realizing all non-isolated DC-DC converters excluding those with coupled inductors. The various DC-DC converters fall into those realized through cascade, stacked, stacked plus cascade, interleaved/paralleled or differential connection of the basic building blocks. A systematic approach for evaluating input-output current gains will be presented. Moreover, a basic building block will be shown to have fixed switching states for proper operation. This gives rise to the generation of a unique set of current waveforms at the three terminals irrespective of where a basic building block is embedded. It has been shown that the effort and time needed to design DC-DC converters can be reduced as switching device stresses can be estimated without the need for tedious first principle derivations.INDEX TERMS Basic building blocks, converter cells, current waveforms, non-isolated DC-DC converters, steady-state gains, unified analysis of DC-DC converters, unified synthesis of DC-DC converters This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.
The inherent non-linear behavior of switch-mode power supplies complicates the task of computing their linear models, which are essential for a model-oriented control design of DC–DC converters. In a model-oriented control design approach, the accuracy of the plant model directly influences the performance of the control system as the plant parameters tend to be linked to the controllers’ gains. Moreover, the extractions of linear dynamic models of high-order non-linear plants such as DC–DC converters are laborious and mathematically intractable. Therefore, in this paper, a generalized expression that represents either the audio-susceptibility or the control-to-output voltage transfer function for voltage-mode control is proposed. The proposed generalization reduces the task of computing the small-signal model of a given converter to simple calculations of coefficients of generalized transfer function/expression. It is shown that the coefficients of the generalized model can be deduced by inspection, directly from the circuit diagram, allowing the whole model to be computed by inspection. Additionally, the proposed modelling technique will be shown to have secondary use of verifying accuracy even when conventional modelling techniques such as state-space averaging or circuit averaging are used.
Supply and demand mismatches in renewable energy systems are addressed by integrating battery banks. Selecting battery bank terminal voltage to match DC-bus voltage (350-450 V for single-phase AC loads), necessitates employing battery banks with long-string connections along with their attendant shortcomings. To employ short-string battery banks, high-boostratio bidirectional interfaces are required between the DC-bus and battery bank. Current literature lacks a single source where high-boost-ratio converters' are categorised and their strengths and weaknesses identified. Comprehensive literature review is hence carried out to determine attributes of various high-boost-ratio DC-DC converters and also categorise them. The key attributes of a topology to interface battery storage to a DC-bus are determined. Based on these a bidirectional tapped-inductor boost converter emerges as the best candidate. Moreover, in order to regulate output voltage, voltage-gain versus duty-ratio characteristics should not be very steep. Since battery terminal voltage varies with state-of-charge, closed-loop control is necessary. Converter's small-signal transfer-functions are derived and a two-loop controller to regulate output voltage and inductor current while allowing bidirectional power flow designed. A novel bidirectional passive lossless snubber circuit is employed to clamp the voltage spikes across the active switches, without altering the normal operation of the converter.
The continued commissioning of DC microgrids in an effort to achieve net-zero carbon levels in the atmosphere demands the large-scale deployment of converters to make the power from renewable energy sources, such as solar PV, usable. To control these inherently non-linear converters using classical linear control methods, averaged modelling techniques are employed. These methods are laborious and easily become intractable when applied to converters with increased energy storage elements. A modular modelling approach is proposed. This approach is based on the synthesis of converters using refined basic building blocks. The refined basic building blocks are independently modelled as two-port networks and used in a circuit synthesis-oriented manner to derive power stage models of commonly used DC-DC converters. It is found that most of the converters considered in the study can be described as a cascade combination of these basic building blocks. As such, transmission parameters are mainly used to model the two-port networks. Moreover, it is also found that using this modelling technique enables the computation of generalized expressions for all power stage models of interest. The use of two-port networks curtails the size of the matrices describing the basic building blocks to 2 × 2, and thus simplifies the entire modelling procedure. Additionally, two-port network analysis makes this modelling technique modular, thus making it more suited to be employed in DC microgrids. The independence of the two-port models on the circuit topology and functionality makes it possible to even model new converters containing the described basic building blocks solely based on circuit connection.
There is always a need to analyze current signals generated by various DC–DC converters. For example, to determine the current stress experienced by semiconductor devices and to evaluate active and reactive power consumption in converters. The study demonstrates that the shape of a current signal dictates the analytical expressions required to determine the average and RMS values of a signal as well as the RMS value of the ripple of that signal. The study also shows that current signals can be treated as composite waveforms comprising various combinations of trapezoidal, rectangular, and triangular pulses. The current literature lacks a unified approach to analyze current stresses in DC–DC converters. This study will propose a unified and generalized analytical technique that is applicable to any type of DC waveform that can be treated as a composite waveform made up of a combination of triangular, rectangular, or trapezoidal sections or sub-intervals. Furthermore, the rectangular and triangular pulses are shown to be a special kind of trapezoidal pulse. This provides the basis for a very broad generalization of current signals’ analysis based on the analysis of a trapezoidal pulse. Additionally, a method for the direct evaluation of signals’ ripple RMS content is developed. This is unlike in the current literature where it is necessary to evaluate the signal’s average and RMS values before ripple content can be evaluated. The technique developed is applicable to continuous and discontinuous conduction modes of operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.