BackgroundHearing tests carried out in home setting by means of mobile devices require previous calibration of the reference sound level. Mobile devices with bundled headphones create a possibility of applying the predefined level for a particular model as an alternative to calibrating each device separately.ObjectiveThe objective of this study was to determine the reference sound level for sets composed of a mobile device and bundled headphones.MethodsReference sound levels for Android-based mobile devices were determined using an open access mobile phone app by means of biological calibration, that is, in relation to the normal-hearing threshold. The examinations were conducted in 2 groups: an uncontrolled and a controlled one. In the uncontrolled group, the fully automated self-measurements were carried out in home conditions by 18- to 35-year-old subjects, without prior hearing problems, recruited online. Calibration was conducted as a preliminary step in preparation for further examination. In the controlled group, audiologist-assisted examinations were performed in a sound booth, on normal-hearing subjects verified through pure-tone audiometry, recruited offline from among the workers and patients of the clinic. In both the groups, the reference sound levels were determined on a subject’s mobile device using the Bekesy audiometry. The reference sound levels were compared between the groups. Intramodel and intermodel analyses were carried out as well.ResultsIn the uncontrolled group, 8988 calibrations were conducted on 8620 different devices representing 2040 models. In the controlled group, 158 calibrations (test and retest) were conducted on 79 devices representing 50 models. Result analysis was performed for 10 most frequently used models in both the groups. The difference in reference sound levels between uncontrolled and controlled groups was 1.50 dB (SD 4.42). The mean SD of the reference sound level determined for devices within the same model was 4.03 dB (95% CI 3.93-4.11). Statistically significant differences were found across models.ConclusionsReference sound levels determined in the uncontrolled group are comparable to the values obtained in the controlled group. This validates the use of biological calibration in the uncontrolled group for determining the predefined reference sound level for new devices. Moreover, due to a relatively small deviation of the reference sound level for devices of the same model, it is feasible to conduct hearing screening on devices calibrated with the predefined reference sound level.
Stationarity is a crucial yet rarely questioned assumption in the analysis of time series of magneto-(MEG) or electroencephalography (EEG). One key drawback of the commonly used tests for stationarity of encephalographic time series is the fact that conclusions on stationarity are only indirectly inferred either from the Gaussianity (e.g. the Shapiro-Wilk test or Kolmogorov-Smirnov test) or the randomness of the time series and the absence of trend using very simple time-series models (e.g. the sign and trend tests by Bendat and Piersol). We present a novel approach to the analysis of the stationarity of MEG and EEG time series by applying modern statistical methods which were specifically developed in econometrics to verify the hypothesis that a time series is stationary. We report our findings of the application of three different tests of stationarity-the Kwiatkowski-Phillips-Schmidt-Schin (KPSS) test for trend or mean stationarity, the Phillips-Perron (PP) test for the presence of a unit root and the White test for homoscedasticity-on an illustrative set of MEG data. For five stimulation sessions, we found already for short epochs of duration of 250 and 500 ms that, although the majority of the studied epochs of single MEG trials were usually mean-stationary (KPSS test and PP test), they were classified as nonstationary due to their heteroscedasticity (White test). We also observed that the presence of external auditory stimulation did not significantly affect the findings regarding the stationarity of the data. We conclude that the combination of these tests allows a refined analysis of the stationarity of MEG and EEG time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.