SummaryTo investigate public health implications of antibiotics to control post-weaning scours, we surveyed 22 commercial pig herds in southeastern Australia. Fifty faecal samples per herd were collected from pre-and post-weaned piglets. Presumptive Escherichia coli isolates were confirmed by MALDI-TOF MS. Isolates (n = 325) were screened for susceptibility to 19 veterinary antibiotics using MIC broth microdilution. All 325 E. coli isolates underwent further testing against 27 antibiotics used in human medicine and were screened for ETEC adhesin and enterotoxin genes (F4 (K88), F5 (K99), F6 (987P), F18, F41, STa, STb, Stx2e and LT) by multiplex PCR. Isolates identified as phenotypically resistant to third-generation cephalosporin (3GC) and aminoglycoside antibiotics were screened by multiplex PCR/reverse line blot to detect common β-lactam and aminoglycosides resistance genes, confirmed by sequencing. Twenty (6.1%) of the E. coli isolates were resistant to 3GC antibiotics and 24 (7.4%) to the aminoglycoside antibiotic gentamicin. Genetic analysis revealed six different extended spectrum β-lactamase (ESBL) genes (blaCTX-M-1, -14, -15, -27, blaSHV-12 and blaCMY-2-like genes), four of which have not been previously reported in Australian pigs. Critically, the prevalence of 3GC resistance was higher in non-pathogenic (non-ETEC) isolates and those from clinically normal (non-diarrhoeal) samples. This highlights the importance of non-ETEC E. coli as reservoirs of antimicrobial resistance genes in piglet pens.Antimicrobial resistance surveillance in pig production focused on diagnostic specimens from clinically-affected animals might be potentially misleading. We recommend that surveillance for emerging antimicrobial resistance such as to 3GC antibiotics should include clinically healthy pigs.
Diarrhoeal diseases in piglets caused by Escherichia coli are responsible for substantial losses each year in the Australian pig industry. A cross-sectional survey was conducted (September 2013–May 2014) across 22 commercial pig herds located in southeastern Australia: NSW (n = 9); VIC (n = 10); and SA (n = 3), to estimate the prevalence of E. coli associated diarrhoea in pre- and post-weaned piglets and to identify key risk factors associated with E. coli disease. A questionnaire on management and husbandry practices was included. Faecal samples (n = 50 from each herd) were tested for the presence of β-haemolytic E. coli. Species level identification was confirmed by matrix-assisted laser desorption / ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). ETEC virulence and enterotoxin genes (F4, F5, F6, F18, F41, STa, STb and LT) were screened for by multiplex PCR. This study assessed 60 potential risk factors for E. coli disease in post-weaned piglets, with 2 key factors–recent disease events and the presence of bedding, statistically associated with the presence of post-weaning scours. The prevalence of diarrhea in pre-weaned pens was 17% (16/93), compared with 24% (24/102) in post-weaned pens. The most prevalent β-haemolytic ETEC genes were F18 (32%) and STb (32%) but isolates were more likely to contain F4:STb (11 of 22 herds, 23%), than F18:STb (5 of 22 herds, 6%). These findings indicate that recent disease events that have occurred within the last 12 months, and by the use of bedding or not maintaining fresh bedding can have significant impacts on piglet diarrhoea.
Diarrhoeal disease (scours) in piglets, often associated with enterotoxigenic Escherichia coli (ETEC), is a substantial financial burden to the pig industry worldwide. Previous research has not explicitly examined the relationships between farm, pen and microbiological factors. Here we present a state of the art analysis to reveal empirical indirect – as well as direct – associations between management factors as putative risks for scours in pre- and post-weaned piglets. A Bayesian Network is constructed to identify the optimal structural model describing the relationships between risk factors. An additive model is then built to estimate more epidemiologically familiar odds ratios. Farm-level variance dominates the model, making many pen-level associations null. However, there is evidence that pre-weaning scours are less likely on farms with <400 sows (0.14, 0.03–0.50). Our results strongly suggest that smaller production units (piglets/pen) could reduce the incidence of scours in piglets. There is also some evidence that ownership of other livestock is a potential risk factor for pre-weaning scours, although this was observed only at one farm. Future research should be directed at better understanding the role of herd size and investigating the relationship between managing other livestock and the occurrence of scours in pig herds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.