Acute hepatopancreatic necrosis disease (AHPND) has extended rapidly, causing alarming shrimp mortalities. Initially, the only known causative agent was Vibrio parahaemolyticus carrying a plasmid coding for the mortal toxins PirVP. Recently, it has been found that the plasmid and hence the disease, could be transferred among members of the Harveyi clade. The current study performs a genomic characterization of an isolate capable of developing AHPND in shrimp. Mortality studies and molecular and histopathological analyses showed the infection capacity of the strain. Multilocus sequence analysis placed the bacteria as a member of the Orientalis clade, well known for containing commensal and even probiotic bacteria used in the shrimp industry. Further whole genome comparative analyses, including Vibrio species from the Orientalis clade, and phylogenomic metrics (TETRA, ANI and DDH) showed that the isolate belongs to a previously unidentified species, now named Vibrio punensis sp. nov. strain BA55. Our findings show that the gene transfer capacity of Vibrio species goes beyond the clade classification, demonstrating a new pathogenic capacity to a previously known commensal clade. The presence of these genes in a different Vibrio clade may contribute to the knowledge of the Vibrio pathogenesis and has major implications for the spread of emerging diseases.
Vibrio parahaemolyticus is a pathogenic bacteria which has been associated to the early mortality syndrome (EMS) also known as hepatopancreatic necrosis disease (AHPND) causing high mortality in shrimp farms. Pathogenic strains contain two homologous genes related to insecticidal toxin genes, PirA and PirB, these toxin genes are located on a plasmid contained within the bacteria. Genomic sequences have allowed the finding of two strains with a divergent structure related to the geographic region from where they were found. The isolates from the geographic collection of Southeast Asia and Mexico show variable regions on the plasmid genome, indicating that even though they are not alike they still conserve the toxin genes. In this paper, we report for the first time, a pathogenic V. parahaemolyticus strain in shrimp from South America that showed symptoms of AHPND. The genomic analysis revealed that this strain of V. parahaemolyticus found in South America appears to be more related to the Southeast Asia as compared to the Mexican strains. This finding is of major importance for the shrimp industry, especially in regards to the urgent need for disease control strategies to avoid large EMS outbreaks and economic loss, and to determine its dispersion in South America. The whole-genome shotgun project of V. parahaemolyticus strain Ba94C2 have been deposited at DDBJ/EMBL/GenBank under the accession PRJNA335761.
Background Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp bacterial disease caused by some Vibrio species. The severity of the impact of this disease on aquaculture worldwide has made it necessary to develop alternatives to prophylactic antibiotics use, such as the application of probiotics. To assess the potential to use probiotics in order to limit the detrimental effects of AHNPD, we evaluated the effect of the ILI strain, a Vibrio sp. bacterium and efficient shrimp probiotic, using metabarcoding (16S rRNA gene) on the gastrointestinal microbiota of shrimp after being challenged with AHPND-causing V. parahaemolyticus. Results We showed how the gastrointestinal microbiome of shrimp varied between healthy and infected organisms. Nevertheless, a challenge of working with AHPND-causing Vibrio pathogens and Vibrio-related bacteria as probiotics is the potential risk of the probiotic strain becoming pathogenic. Consequently, we evaluated whether ILI strain can acquire the plasmid pV-AHPND via horizontal transfer and further cause the disease in shrimp. Conjugation assays were performed resulting in a high frequency (70%) of colonies harboring the pv-AHPND. However, no shrimp mortality was observed when transconjugant colonies of the ILI strain were used in a challenge test using healthy shrimp. We sequenced the genome of the ILI strain and performed comparative genomics analyses using AHPND and non-AHPND Vibrio isolates. Using available phylogenetic and phylogenomics analyses, we reclassified the ILI strain as Vibrio diabolicus. In summary, this work represents an effort to study the role that probiotics play in the normal gastrointestinal shrimp microbiome and in AHPND-infected shrimp, showing that the ILI probiotic was able to control pathogenic bacterial populations in the host's gastrointestinal tract and stimulate the shrimp’s survival. The identification of probiotic bacterial species that are effective in the host’s colonization is important to promote animal health and prevent disease. Conclusions This study describes probiotic bacteria capable of controlling pathogenic populations of bacteria in the shrimp gastrointestinal tract. Our work provides new insights into the complex dynamics between shrimp and the changes in the microbiota. It also addresses the practical application of probiotics to solve problems with pathogens that cause high mortality-rate in shrimp farming around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.