Background: The Namibian Ministry of Health and Social Services (MoHSS) piloted the first HIV Project ECHO (Extension for Community Health Outcomes) in Africa at 10 clinical sites between 2015 and 2016. Goals of Project ECHO implementation included strengthening clinical capacity, improving professional satisfaction, and reducing isolation while addressing HIV service challenges during decentralization of antiretroviral therapy. Methods: MoHSS conducted a mixed-methods evaluation to assess the pilot. Methods included pre/post program assessments of healthcare worker knowledge, self-efficacy, and professional satisfaction; assessment of continuing professional development (CPD) credit acquisition; and focus group discussions and in-depth interviews. Analysis compared the differences between pre/post scores descriptively. Qualitative transcripts were analyzed to extract themes and representative quotes. Results: Knowledge of clinical HIV improved 17.8% overall (95% confidence interval 12.2-23.5%) and 22.3% (95% confidence interval 13.2-31.5%) for nurses. Professional satisfaction increased 30 percentage points. Most participants experienced reduced professional isolation (66%) and improved CPD credit access (57%). Qualitative findings reinforced quantitative results. Following the pilot, the Namibia MoHSS Project ECHO expanded to over 40 clinical sites by May 2019 serving more than 140 000 people living with HIV. Conclusions: Similar to other Project ECHO evaluation results in the United States of America, Namibia's Project ECHO led to the development of ongoing virtual communities of practice. The evaluation demonstrated the ability of the Namibia HIV Project ECHO to improve healthcare worker knowledge and satisfaction and decrease professional isolation.
Background Three months after the first reported cases, COVID-19 had spread to nearly 90% of World Health Organization (WHO) member states and only 24 countries had not reported cases as of 30 March 2020. This analysis aimed to 1) assess characteristics, capability to detect and monitor COVID-19, and disease control measures in these 24 countries, 2) understand potential factors for the reported delayed COVID-19 introduction, and 3) identify gaps and opportunities for outbreak preparedness, particularly in low and middle-income countries (LMICs). We collected and analyzed publicly available information on country characteristics, COVID-19 testing, influenza surveillance, border measures, and preparedness activities in these countries. We also assessed the association between the temporal spread of COVID-19 in all countries with reported cases with globalization indicator and geographic location. Results Temporal spreading of COVID-19 was strongly associated with countries’ globalization indicator and geographic location. Most of the 24 countries with delayed COVID-19 introduction were LMICs; 88% were small island or landlocked developing countries. As of 30 March 2020, only 38% of these countries reported in-country COVID-19 testing capability, and 71% reported conducting influenza surveillance during the past year. All had implemented two or more border measures, (e.g., travel restrictions and border closures) and multiple preparedness activities (e.g., national preparedness plans and school closing). Conclusions Limited testing capacity suggests that most of the 24 delayed countries may have lacked the capability to detect and identify cases early through sentinel and case-based surveillance. Low global connectedness, geographic isolation, and border measures were common among these countries and may have contributed to the delayed introduction of COVID-19 into these countries. This paper contributes to identifying opportunities for pandemic preparedness, such as increasing disease detection, surveillance, and international collaborations. As the global situation continues to evolve, it is essential for countries to improve and prioritize their capacities to rapidly prevent, detect, and respond, not only for COVID-19, but also for future outbreaks.
Background Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. Methods We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011‐2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. Results Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case‐patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza‐like illness case‐patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage‐type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. Conclusions Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness.
A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.