1,2-Bis(9,10-dibromooleoyl)phosphatidylcholine (BRPC) has been prepared from dioleoylphosphatidylcholine (DOPC). It is shown that the gel to liquid-crystalline phase transition for BRPC occurs below ca. 5 degrees C and that the motional properties of bilayers of BRPC and DOPC as detected by spin-labeled fatty acids are similar. The ATPase activities of the (Ca2+-Mg2+)-ATPase from rabbit muscle sarcoplasmic reticulum reconstituted with BRPC and DOPC are similar. The brominated lipid quenches the fluorescence of the ATPase and can be used to determine selectivity of lipid binding to the ATPase. We show that there is little selectivity on the basis of fatty acyl chain length. Binding constants for phosphatidylcholines and phosphatidylserines are similar in the absence of calcium, although that for phosphatidylserine decreases in the presence of calcium. Phosphatidylethanolamines binds less strongly than phosphatidylcholines, although the difference is small. The largest difference in binding constants is seen between phosphatidylcholines in the gel and liquid-crystalline phases, with a distribution coefficient of 30 in favor of the liquid-crystalline phase. It is shown that the distribution of the ATPase in mixtures of dipalmitoylphosphatidylcholine and BRPC can be understood in terms of the phase diagram for this mixture of lipids. Activities of the ATPase in the presence of mixtures of lipids can be explained in terms of the relative binding constants obtained from the fluorescence experiments.
Preferential interaction of trans-membrane alpha-helices whose hydrophobic length matches the hydrophobic thickness of the lipid bilayer could be a mechanism of retention in the Golgi apparatus. We have used fluorescence methods to study the interaction of peptides Ac-K2-G-Lm-W-Ln-K2-A-amide (Pm+n) with bilayers of phosphatidylcholines with chain lengths between C14 and C24. The peptide P22 (m = 10, n = 12) incorporates into all bilayers, but P16 (m = 7, n = 9) does not incorporate into bilayers when the fatty acyl chain length is C24 and only partly incorporates into bilayers where the chain length is C22. The strongest binding is seen when the hydrophobic length of the peptide matches the calculated hydrophobic thickness of the bilayer. It is suggested that a too-thin bilayer can match to a too-long peptide both by stretching of the lipid and by tilting of the peptide. However, a too-thick bilayer can only match a too-thin peptide by compression of the lipid, which becomes energetically unfavorable when the difference between the bilayer thickness and the peptide length exceeds about 10 A. The presence of cholesterol in the bilayer leads to a marked reduction in the incorporation of P16 into bilayers where the chain length is C18. Hydrophobic mismatch could explain retention of proteins with short trans-membrane alpha-helical domains in the Golgi, the effect following largely from the low concentration of cholesterol in the Golgi membrane compared to that in the plasma membrane.
The ATPase activity of the (Ca(2+)-Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum and reconstituted into phosphatidylcholine bilayers of defined composition depends on the fatty acyl chain length of the surrounding phospholipid. The stoichiometry of Ca2+ binding to the ATPase is also sensitive to fatty acyl chain length, changing from the normal two Ca2+ ions bound per ATPase molecule to one Ca2+ ion bound for the ATPase reconstituted with phosphatidylcholines of chain lengths C12, C14, or C24. For the ATPase reconstituted with mixture of phosphatidylcholines where one phosphatidylcholine supports a Ca2+ binding stoichiometry of two and the other a stoichiometry of one, a highly cooperative change in binding stoichiometry with change in phospholipid composition is observed, suggesting that the effects of phospholipids follow from binding to a large number of sites at the lipid-protein interface of the ATPase. For the ATPase reconstituted with either 1-myristoyl-2-oleoylphosphatidylcholine or 1-oleoyl-2-myristoylphosphatidylcholine, the stoichiometry of Ca2+ binding is the normal two per ATPase molecule. Effects of short-chain phosphatidylcholines on Ca2+ binding stoichiometry and on ATPase activity can be reversed by addition of androstenol, oleic acid, methyl oleate, or oleyl alcohol but these molecules have no effect on the ATPase reconstituted with dinervonylphosphatidylcholine (C24:1). For the ATPase reconstituted with phosphatidylcholines with chain lengths between C16 and C22, release of the two bound Ca2+ ions is sequential, with release of the second Ca2+ being inhibited by high concentrations of Ca2+ in the bathing medium.(ABSTRACT TRUNCATED AT 250 WORDS)
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)
A spin-labeled phospholipid is used to study lipid-protein interactions in the (Ca2+,Mg2+)-ATPase of sarcoplasmic reticulum from muscle. A novel null method is used to decompose composite electron spin resonance spectra into two components, characteristic of immobilized and mobile environments. Calculations based on a random mixing model suggest that protein-protein interactions will be relatively rare in these systems and that the immobilized lipid does not represent lipid trapped between proteins but rather represents annular phospholipid at the lipid-protein interface of the adenosinetriphosphatase. The apparent decrease in the amount of immobilized lipid with increasing temperature is shown to be consistent with lipid exchange between bulk and annulus, characterized by an exchange time of 10(-7) s at 37 degrees C. A minimum number of annular phospholipid sites of 32 and 22 are calculated at 0 and 37 degrees C, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.