Previous studies from our laboratory have demonstrated that the mitochondrial protein manganese superoxide dismutase is inactivated, tyrosine nitrated, and present as higher molecular mass species during human renal allograft rejection. To elucidate mechanisms whereby tyrosine modifications might result in loss of enzymatic activity and altered structure, the effects of specific biological oxidants on recombinant human manganese superoxide dismutase in vitro have been evaluated. Hydrogen peroxide or nitric oxide had no effect on enzymatic activity, tyrosine modification, or electrophoretic mobility. Exposure to either hypochlorous acid or tetranitromethane (pH 6) inhibited (approximately 50%) enzymatic activity and induced the formation of dityrosine and higher mass species. Treatment with tetranitromethane (pH 8) inhibited enzymatic activity 67% and induced the formation of nitrotyrosine. In contrast, peroxynitrite completely inhibited enzymatic activity and induced formation of both nitrotyrosine and dityrosine along with higher molecular mass species. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that only three (Y34, Y45, and Y193) of the nine total tyrosine residues in manganese superoxide dismutase were nitrated by peroxynitrite. Inspection of X-ray crystallographic data suggested that neighboring glutamate residues associated with two of these tyrosines may promote targeted nitration by peroxynitrite. Tyr34, which is present in the active site, appeared to be the most susceptible residue to peroxynitrite-mediated nitration. Collectively, these observations are consistent with previous results using chronically rejecting human renal allografts and provide a compelling argument supporting the involvement of peroxynitrite during this pathophysiologic condition.
Manganese superoxide dismutase (MnSOD) is essential for life as dramatically illustrated by the neonatal lethality of mice that are deficient in MnSOD. In addition, mice expressing only 50% of the normal compliment of MnSOD demonstrate increased susceptibility to oxidative stress and severe mitochondrial dysfunction resulting from elevation of reactive oxygen species. Thus, it is important to know the status of both MnSOD protein levels and activity in order to assess its role as an important regulator of cell biology. Numerous studies have shown that MnSOD can be induced to protect against pro-oxidant insults resulting from cytokine treatment, ultraviolet light, irradiation, certain tumors, amyotrophic lateral sclerosis, and ischemia/reperfusion. In addition, overexpression of MnSOD has been shown to protect against pro-apoptotic stimuli as well as ischemic damage. Conversely, several studies have reported declines in MnSOD activity during diseases including cancer, aging, progeria, asthma, and transplant rejection. The precise biochemical/molecular mechanisms involved with this loss in activity are not well understood. Certainly, MnSOD gene expression or other defects could play a role in such inactivation. However, based on recent findings regarding the susceptibility of MnSOD to oxidative inactivation, it is equally likely that post-translational modification of MnSOD may account for the loss of activity. Our laboratory has recently demonstrated that MnSOD is tyrosine nitrated and inactivated during human kidney allograft rejection and human pancreatic ductal adenocarcinoma. We have determined that peroxynitrite (ONOO- ) is the only known biological oxidant competent to inactivate enzymatic activity, to nitrate critical tyrosine residues, and to induce dityrosine formation in MnSOD. Tyrosine nitration and inactivation of MnSOD would lead to increased levels of superoxide and concomitant increases in ONOO- within the mitochondria which, could lead to tyrosine nitration/oxidation of key mitochondrial proteins and ultimately mitochondrial dysfunction and cell death. This article assesses the important role of MnSOD activity in various pathological states in light of this potentially lethal positive feedback cycle involving oxidative inactivation.
Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. Am J Physiol Renal Physiol 306: F734-F743, 2014. First published February 5, 2014 doi:10.1152/ajprenal.00643.2013.-Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.