Cocaine addiction appears to be associated with a drug-induced dysregulation of stressor responsiveness that may contribute to further cocaine use. The present study examined alterations in stressor-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis in rats provided daily access to cocaine for self-administration (SA) under long-access conditions (1.0 mg/kg/inf; 6 hrs × 14 days). Cocaine self-administering rats displayed reduced basal plasma corticosterone (CORT) levels but showed an augmented restraint-induced percent increase response from baseline compared to saline self-administering controls when measured 24 days after SA testing. This augmented CORT response may have been attributable to impaired glucocorticoid receptor (GR)-mediated feedback regulation of HPA function, since cocaine self-administering rats were also less susceptible to dexamethasone (0.01 mg/kg, ip) suppression of plasma CORT levels. GR protein expression measured using Western blot analysis was significantly reduced in the dorsomedial hypothalamus (including the paraventricular nucleus [PVN]) but not in the pituitary gland, ventromedial hypothalamus, dorsal hippocampus, ventral subiculum, medial prefrontal cortex or amygdala in cocaine self-administering rats. Surprisingly, basal corticotropin-releasing hormone (CRH) mRNA or post-restraint increases in CRH mRNA measured at a single (90-min) time-point in the PVN using in situ hybridization did not differ between groups. The findings suggest that cocaine use produces persistent changes in individual responsiveness to stressors that may contribute to the addiction process.
Stress responses during cocaine withdrawal likely contribute to drug relapse and may be intensified as a consequence of prior cocaine use. The present study examined changes in stressor-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis during acute withdrawal from chronic cocaine administration. Adult male Sprague-Dawley rats received daily administration of cocaine (30 mg/kg, i.p.) or saline for 14 days. Twenty-four hours after the last injection, rats in each group were sacrificed under stress-free conditions or following 30 min of immobilization. Plasma corticosterone (CORT) was measured in trunk-blood using radioimmunoassay, corticotropin-releasing hormone (CRH) mRNA levels in the paraventricular nucleus (PVN) of the hypothalamus were measured using in situ hybridization and glucocorticoid receptor (GR) protein expression in the pituitary gland and dissected brain regions was measured using Western blot analysis. Basal CRH mRNA in the PVN was unaltered as a result of prior cocaine administration. However, a significant increase in CRH mRNA was observed 90 min following the termination of restraint in cocaine withdrawn, but not saline-treated, rats. Basal CORT was also unaffected by prior cocaine administration, but the CORT response measured immediately after restraint was significantly augmented in cocaine-withdrawn rats. Differences in GR protein expression in number of regions implicated in negative feedback regulation of HPA function, including the hypothalamus, were not observed. These findings indicate that the HPA response to stressors is intensified during early withdrawal from cocaine administration and may be independent of changes in GR-mediated negative feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.