Growth cones are highly polarized and dynamic structures confined to the tips of axons. The polarity of growth cones is in part maintained by suppression of protrusive activity from the distal axon shaft, a process termed axon consolidation. The mechanistic basis of axon consolidation that contributes to the maintenance of growth cone polarity is not clear. We report that inhibition of RhoA-kinase (ROCK) or myosin II resulted in unstable consolidation of the distal axon as evidenced by increased filopodial and lamellipodial extension. Furthermore, when ROCK or myosin II was inhibited lamellipodia formed at the growth cone migrated onto the axon shaft. Analysis of EYFP-actin dynamics in the distal axon revealed that ROCK negatively regulates actin polymerization and initiation of protrusive structures from spontaneously formed axonal F-actin patches, the latter being an effect attributable to ROCK-mediated regulation of myosin II. Inhibition of ROCK or myosin II blocked growth cone turning toward NGF by preventing suppression of protrusive activity away from the source of NGF, resulting in aborted turning responses. These data elucidate the mechanism of growth cone polarity, provide evidence that consolidation of the distal axon is a component of guidance, and identify ROCK as a negative regulator of F-actin polymerization underlying protrusive activity in the distal axon.
Patients with hereditary angioedema lack C-1 inhibitor, a plasma alpha 2-glycoprotein that inhibits both the proteolytic action of C1, the activated first component of the complement system, and the activity of components of the contact phase of coagulation: kallikrein, factor XIa, and factor XIIa. Such patients have been shown to have low levels of C4 and C2, the natural substrates for C-1, but the levels were not correlated with the presence of symptoms. We studied three patients with angioedema for evidence of activation of the contact system and found that during a symptomatic period they had decreased levels of prekallikrein, a substrate for the activated forms of factor XII, and reductions in high-molecular-weight kininogen, a substrate for plasma kallikrein. These observations suggest that zymogens of the contact system are activated during attacks of hereditary angioedema and that some of the clinical manifestations may be mediated through products of this pathway, such as kinins.
Viper venom disintegrins contain the RGD/KGD motif. They inhibit platelet aggregation and cell adhesion, but show structural and functional heterogeneity. We investigated the interaction of four prototypic disintegrins with alpha IIb beta 3 expressed on the surface of resting and activated platelets. The binding affinity (Kd) of 125I-albolabrin, 125I-echistatin, 125I-bitistatin and 125I-eristostatin toward resting platelets was 294, 153, 48 and 18 nM respectively. The Kd value for albolabrin decreased 3-fold and 6-fold after ADP- or thrombin-induced activation. The Kd values for bitistatin and echistatin also decreased with ADP, but there was no further decrease with thrombin. In contrast, eristostatin bound with the same high affinity to resting and activated platelets. The pattern of fluorescein isothiocyanate (FITC)-eristostatin and FITC-albolabrin binding to resting and activated platelets was consistent with observations using radiolabelled material. Eristostatin showed faster and more irreversible binding to platelets, and greater potency compared with albolabrin in inducing conformational neo-epitopes in beta 3. The anti-alpha IIb beta 3 monoclonal antibody OP-G2 that is RGD-dependent inhibited disintegrin binding to activated platelets more strongly than binding to resting platelets and it inhibited the binding to platelets of albolabrin more strongly than eristostatin. The specificity of disintegrin interaction with alpha IIb beta 3 was confirmed by demonstrating cross-linking of these peptides to alpha IIb beta 3 on normal platelets, but not to thrombasthenic platelets deficient in alpha IIb beta 3.
Abstract. High molecular weight kininogen (HMW)-kininogen, the cofactor of contact-activated blood coagulation, accelerates the activation of Factor XII, prekallikrein, and Factor XI on a negatively charged surface. Although prekallikrein and Factor XI circulate as a complex with HMW-kininogen, no physical association has been demonstrated between Factor XII and HMW-kininogen, nor has the order of adsorption to surfaces of these proteins been fully clarified. In this report, we explore the requirements for adsorption of HMWkininogen to a clot-promoting surface (kaolin), in purified systems, as well as in normal plasma and plasma genetically deficient in each ofthe proteins of the contact system. The fraction ofeach coagulant protein associated with the kaolin pellet was determined by measuring the difference in coagulant activity between the initial sample and supernatants after incubation with kaolin, or by directly quantifying the amount of '25I-HMW-kininogen that was associated with the kaolin pellet.In normal plasma, the adsorption of HMW-kininogen to kaolin increased as the quantity of kaolin was increased in the incubation mixture. However, the HMW-kininogen in Factor XII-deficient plasma did not absorb appreciably to kaolin. Furthermore, the quantity of HMW-kininogen Portions ofthis work were presented at the 55th session ofthe American Heart Association, November 15-18, 1982, Dallas, TX and were published in abstract form (1982, Circulation, 66:295 from prekallikrein-deficient plasma that adsorbed to kaolin was decreased as compared with normal plasma. These observations suggested that HMW-kininogen in plasma must be altered by a reaction involving both Factor XII and prekallikrein in order for HMW-kininogen to adsorb to kaolin, and to express its coagulant activity. Subsequently, the consequence of the inability of HMWkininogen to associate with a negatively charged surface results in decreased surface activation. This assessment was derived from the further observation of the lack of prekallikrein adsorption and the diminished Factor XI adsorption in both Factor XII-deficient and HMW-kininogen-deficient plasmas, since these two zymogens (prekallikrein and Factor XI) are transported to a negatively charged surface in complex with HMW-kininogen. The percentage of HMW-kininogen coagulant activity that adsorbed to kaolin closely correlated (r = 0.98, slope = 0.97) with the amount of 125I-HMW-kininogen adsorbed, suggesting that adsorption of HMW-kininogen results in the expression of its coagulant activity.Since kallikrein, which is known to cleave HMWkininogen, is generated when kaolin is added to plasma, we tested the hypothesis that proteolysis by kallikrein was responsible for the enhanced adsorption of HMW-kininogen to kaolin. When purified HMW-kininogen was incubated with purified kallikrein, its ability to adsorb to kaolin increased with time of digestion until a maximum was reached. Moreover, '25I-HMW-kininogen, after cleavage by kallikrein, had markedly increased affinity for kaolin than the unclea...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.