Progress toward understanding the pathogenesis of cystic fibrosis (CF) and developing effective therapies has been hampered by lack of a relevant animal model. CF mice fail to develop the lung and pancreatic disease that cause most of the morbidity and mortality in patients with CF. Pigs may be better animals than mice in which to model human genetic diseases because their anatomy, biochemistry, physiology, size, and genetics are more similar to those of humans. However, to date, gene-targeted mammalian models of human genetic disease have not been reported for any species other than mice. Here we describe the first steps toward the generation of a pig model of CF. We used recombinant adeno-associated virus (rAAV) vectors to deliver genetic constructs targeting the CF transmembrane conductance receptor (CFTR) gene to pig fetal fibroblasts. We generated cells with the CFTR gene either disrupted or containing the most common CF-associated mutation (ΔF508). These cells were used as nuclear donors for somatic cell nuclear transfer to porcine oocytes. We thereby generated heterozygote male piglets with each mutation. These pigs should be of value in producing new models of CF. In addition, because gene-modified mice often fail to replicate human diseases, this approach could be used to generate models of other human genetic diseases in species other than mice.
Targeted modification of the pig genome can be challenging. Recent applications of the CRISPR/Cas9 system hold promise for improving the efficacy of genome editing. When a designed CRISPR/Cas9 system targeting CD163 or CD1D was introduced into somatic cells, it was highly efficient in inducing mutations. When these mutated cells were used with somatic cell nuclear transfer, offspring with these modifications were created. When the CRISPR/Cas9 system was delivered into in vitro produced presumptive porcine zygotes, the system was effective in creating mutations in eGFP, CD163, and CD1D (100% targeting efficiency in blastocyst stage embryos); however, it also presented some embryo toxicity. We could also induce deletions in CD163 or CD1D by introducing two types of CRISPRs with Cas9. The system could also disrupt two genes, CD163 and eGFP, simultaneously when two CRISPRs targeting two genes with Cas9 were delivered into zygotes. Direct injection of CRISPR/Cas9 targeting CD163 or CD1D into zygotes resulted in piglets that have mutations on both alleles with only one CD1D pig having a mosaic genotype. We show here that the CRISPR/Cas9 system can be used by two methods. The system can be used to modify somatic cells followed by somatic cell nuclear transfer. System components can also be used in in vitro produced zygotes to generate pigs with specific genetic modifications.
The NIH miniature pig was developed specifically for xenotransplantation and has been extensively used as a large animal model in many other biomedical experiments. However the cloning efficiency of this pig is very low (less than 0.2%) and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Here we report that treatment with 500 nM Scriptaid, a novel HDACi, significantly enhanced the development SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) (21% vs. 9%, P < 0.05) were used as donors compared to the untreated group. Scriptaid treatment resulted in 8 pregnancies from 10 embryo transfers (ET) and 14 healthy NIH miniature pigs from 8 litters while no viable piglets (only 3 mummies) were obtained from 9 ETs in the untreated group. Thus Scriptaid dramatically increased the cloning efficiency when using inbred genetics from zero to 1.3%. In contrast, Scriptaid treatment decreased the blastocyst rate in IVF embryos (from 37% to 26%, P < 0.05). In conclusion, the extreme low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns.
Faulty epigenetic reprogramming of somatic nuclei is likely to be a major cause of low success observed in all mammals produced through somatic cell nuclear transfer (SCNT). It has been demonstrated that the developmental competence of SCNT embryos in several species were significantly enhanced via treatment of histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) to increase histone acetylation. Here we report that 50 nM TSA for 10 hrs after activation increased the developmental competence of porcine SCNT embryos constructed from Landrace fetal fibroblast cells (FFCs) in vitro and in vivo, but not at higher concentrations. Therefore we optimized the application of another novel HDACi, Scriptaid, for development of porcine SCNT embryos. We found that treatment with 500 nM Scriptaid significantly enhanced the development SCNT embryos to the blastocyst stage when outbred Landrace FFCs and ear fibroblast cells (EFCs) were used as donors compared to the untreated group. Scriptaid increased the overall cloning efficiency from 0.4% (untreated group) to 1.6% for Landrace FFCs and 0% to 3.7% for Landrace EFCs. Moreover, treatment of SCNT embryos with Scriptaid improved the histone acetylation on Histone H4 at lysine 8 (AcH4K8) in a pattern similar to that of the in vitro fertilized (IVF) embryos.
In vitro embryo culture systems promote development at rates lower than in vivo systems. The goal of this project was to discover transcripts that may be responsible for a decrease of embryo competency in blastocyst-stage embryos cultured in vitro. Gilts were artificially inseminated on the first day of estrus, and on Day 2, one oviduct and the tip of a uterine horn were flushed and the recovered embryos were cultured in porcine zygote medium 3 for 4 days. On Day 6, the gilts were euthanized and the contralateral horn was flushed to obtain in vivo derived embryos. Total RNA was extracted from three pools of 10 blastocysts from each treatment. First and second strand cDNA was synthesized and sequenced using Illumina sequencing. The reads generated were aligned to a custom-built database designed to represent the known porcine transcriptome. A total of 1170 database members were different between the two groups (P < 0.05), and 588 of those had at least a 2-fold difference. Eleven transcripts were subjected to real-time PCR that validated the sequencing. There was an overall decrease in inner cell mass (ICM) and trophectodermal (TE) cell numbers in embryos cultured in vitro; however, no difference in the ICM:TE ratio was found. Interestingly, the transcript SLC7A1 was higher in the in vitro cultured group. This difference disappeared after addition of arginine to the 4-day culture. Illumina sequencing and alignment to a custom transcriptome identified a large number of genes that yield clues on ways to manipulate the culture media to mimic the in vivo environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.