We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, making it difficult to recognize the exact location and speed of the object in the video. Additionally, because the fast moving object usually moves rapidly out of the camera’s field of view, the number of captured frames used as input for future-motion predictions should be minimized. Our model can capture a short video sequence of two frames with a high-speed moving object as input, use motion blur as additional information to recognize the position and velocity of the object, and predict the video frame containing the future motion of the object. Experiments show that our model has significantly better performance than existing future-frame prediction models in determining the future position and velocity of an object in two physical scenarios where a fast-moving two-dimensional object appears.
Systems whose entities interact with each other are common. In many interacting systems, it is difficult to observe the relations between entities which is the key information for analyzing the system. In recent years, there has been increasing interest in discovering the relationships between entities using graph neural networks. However, existing approaches are difficult to apply if the number of relations is unknown or if the relations are complex. We propose the DiScovering Latent Relation (DSLR) model, which is flexibly applicable even if the number of relations is unknown or many types of relations exist. The flexibility of our DSLR model comes from the design concept of our encoder that represents the relation between entities in a latent space rather than a discrete variable and a decoder that can handle many types of relations. We performed the experiments on synthetic and real-world graph data with various relationships between entities, and compared the qualitative and quantitative results with other approaches. The experiments show that the proposed method is suitable for analyzing dynamic graphs with an unknown number of complex relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.