A total of 765 Escherichia coli isolates from point and nonpoint sources were collected from the Apalachicola National Estuarine Research Reserve, and their multiple-antibiotic-resistance (MAR) profiles were determined with 10 antibiotics. E. coli isolates from point sources showed significantly greater resistance (P < 0.05) to antibiotics and higher MAR indices than isolates from nonpoint sources. Specifically, 65 different resistance patterns were observed among point source isolates, compared to 32 among nonpoint source isolates. Examples of this contrast in MAR profiles included percentages of isolates with resistance to chlortetracycline-sulfathiazole of 33.7% and to chlortetracycline-penicillin G-sulfathiazole of 14.5% for point source isolates versus 15.4 and 1.7%, respectively, for nonpoint source isolates. MAR profile homology, based on coefficient similarity, showed that isolates from point sources were markedly more diverse than isolates from nonpoint sources. Seven clusters were observed among point source isolates, with a coefficient value of approximately 1.8. In contrast, only four clusters were observed among nonpoint source isolates. Covariance matrices of data displayed six very distinct foci representing nonpoint source E. coli isolates. Importantly, E. coli isolates obtained directly from human and animal feces also clustered among point and nonpoint sources, respectively. We conclude that E. coli MAR profiles were associated with point and nonpoint sources of pollution within Apalachicola Bay and that this method may be useful in facilitating management of other estuaries.
Estuarine waters receive fecal pollution from a variety of sources, including humans and wildlife. Escherichia coli is a ubiquitous bacterium in the intestines of warm-blooded animals and is used as an indicator of fecal pollution. However, its presence does not specifically differentiate sources of pollution. A total of 238E. coli isolates from human sources (HS) and nonhuman sources (NHS) were collected from the Apalachicola National Estuarine Research Reserve, from associated sewage treatment plants, and directly from animals and tested for ribotype (RT) profile. HS and NHS isolates showed 41 and 61 RT profiles, respectively. At a similarity index of ca. 50%, HS and NHS isolates demonstrated four clusters, with the majority of HS and NHS isolates located in clusters C and D; isolates obtained directly from human and animal feces also could be grouped within these clusters. Discriminant analysis (DA) of RT profiles showed that 97% of the NHS isolates and 100% of the animal fecal isolates were correctly classified. The average rate of correct classification for HS and NHS isolates was 82%. We conclude that DA of RT profiles may be a useful method for identifying HS and NHS fecal pollution and may potentially facilitate management practices.
a b s t r a c tApalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions in the bay and its late Holocene evolution. Sidescan-sonar imagery, bathymetry, high-resolution seismic profiles, and sediment cores show that oyster beds occupy the crests of a series of shoals that range from 1 to 7 km in length, trend roughly north-south perpendicular to the long axes of the bay and sound, and are asymmetrical with steeper sides facing to the west. Surface sediment samples show that the oyster beds consist of shelly sand, while much of the remainder of the bay floor is covered by mud delivered by the Apalachicola River. The present oyster reefs rest on sandy delta systems that advanced southward across the region between 6400 and 4400 yr BP when sea level was 4e6 m lower than present. Oysters started to colonize the region around 5100 yr BP and became extensive by 1200 and 2400 yr BP. Since 1200 yr BP, their aerial extent has decreased due to burial of the edges of the reefs by the prodelta mud that continues to be supplied by the Apalachicola River. Oyster reefs that are still active are narrower than the original beds, have grown vertically, and become asymmetrical in cross-section. Their internal bedding indicates they have migrated westward, suggesting a net westerly transport of sediment in the bay.Published by Elsevier Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.