Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in palaeometeoric fissure water up to 12,300 yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system.
Eukarya have been discovered in the deep subsurface at several locations in South Africa, but how organisms reach the subsurface remains unknown. We studied river-subsurface fissure water systems and identified Eukarya from a river that are genetically identical for 18S rDNA. To further confirm that these are identical species one metazoan species recovered from the overlying river interbred successfully with specimen recovered from an underlying mine at −1.4 km.
In situ
seismic simulation experiments were carried out and show seismic activity to be a major force increasing the hydraulic conductivity in faults allowing organisms to create ecosystems in the deep subsurface. As seismic activity is a non-selective force we recovered specimen of algae and Insecta that defy any obvious other explanation at a depth of −3.4 km. Our results show there is a steady flow of surface organisms to the deep subsurface where some survive and adapt and others perish. As seismic activity is also present on other planets and moons in our solar system the mechanism elucidated here may be relevant for future search and selection of landing sites in planetary exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.